Many icy bodies in the solar system have been found to contain a rich mixture of simple molecules on their surfaces. Similarly, comets are now known to be a reservoir of molecules ranging from water to amides. The processing of planetary/cometary ices leads to the synthesis of more complex molecules some of which may be the harbingers of life. Carbon disulphide (CS) and ammonia (NH) are known to be present on many icy satellites and comets. Reactions involving CS and NH may lead to the formation of larger molecules that are stable under space conditions. In this paper we present temperature dependent VUV spectra of pure CS in the ice phase, and of CS and NH ices deposited as (i) layered, and (ii) mixed ices at 10 K and warmed to higher temperatures until their sublimation. Pure CS ice is found to have a broad absorption in the VUV region, which is unique for a small molecule in the ice phase. In layered and mixed ices, the molecules tend to affect the phase change and sublimation temperature of each other and also leave behind a form of CS-NH complex after thermal annealing. This study of CS-NH ice systems in layered and mixed configurations would support the detection of these species/complexes in mixed molecular ices analogous to that on planetary and cometary surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2022.121645DOI Listing

Publication Analysis

Top Keywords

layered mixed
12
solar system
8
pure ice
8
ice phase
8
mixed ices
8
ice
5
molecules
5
ices
5
vuv photoabsorption
4
photoabsorption thermally
4

Similar Publications

Purpose: The relationship between retinal morphology, as assessed by optical coherence tomography (OCT), and retinal function in microperimetry (MP) has not been well studied, despite its increasing importance as an essential functional endpoint for clinical trials and emerging therapies in retinal diseases. Normative databases of healthy ageing eyes are largely missing from literature.

Methods: Healthy subjects above 50 years were examined using two MP devices, MP-3 (NIDEK) and MAIA (iCare).

View Article and Find Full Text PDF

To address the challenges of performing in-situ tests on riverbed overburden gravel, this study employs three scaling methods-equal mass substitution, similar gradation, and the mixed method-to investigate the original gradation of the gravel. Large-scale triaxial consolidated drained shear tests were conducted to evaluate the effects of the maximum particle size reduction ratio (M) and confining pressure on the stress-strain behavior, fractal dimension, particle breakage, and the parameters of the Duncan-Chang model (an elastic model describing nonlinear stress-strain relationships). The study explores how scaling, based on fractal dimension and particle breakage rate, impacts the strength and deformation characteristics of gravel materials.

View Article and Find Full Text PDF

Purpose: To compare the retinal nerve fiber layer (RNFL), ganglion cell-inner plexiform layer thickness, central subfield thickness (CSFT), and parafoveal and perifoveal thickness in children of different age groups with young adult controls by using spectral-domain optical coherence tomography.

Methods: This cross-sectional study included children aged 6-17 years and adult controls (18-22 years) - group 1: 6-9 years (57 eyes), group 2: 10-13 years (116 eyes), group 3: 14-17 years (66 eyes), and group 4 (controls): 18-22 years (61 eyes). A mixed-effects model was used to compare the OCT parameters among the groups, along with multivariable analysis.

View Article and Find Full Text PDF

Nanodots of Transition Metal Sulfides, Carbonates, and Oxides Obtained Through Spontaneous Co-Precipitation with Silica.

Nanomaterials (Basel)

December 2024

Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.

The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.

View Article and Find Full Text PDF

Pressure-Induced Assembly of Organic Phase-Change Materials Hybridized with Expanded Graphite and Carbon Nanotubes for Direct Solar Thermal Harvesting and Thermoelectric Conversion.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.

Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!