Purpose: Tumor hypoxia is associated with poor response to radiation (RT). We previously discovered a novel mechanism of metformin: enhancing tumor RT response by decreasing tumor hypoxia. We hypothesized that metformin would decrease tumor hypoxia and improve cervical cancer response to RT.

Patients And Methods: A window-of-opportunity, phase II randomized trial was performed in stage IB-IVA cervical cancer. Patients underwent screening positron emission tomography (PET) imaging with hypoxia tracer fluoroazomycin arabinoside (FAZA). Only patients with FAZA uptake (hypoxic tumor) were included and randomized 2:1 to receive metformin in combination with chemoRT or chemoRT alone. A second FAZA-PET/CT scan was performed after 1 week of metformin or no intervention (control). The primary endpoint was a change in fractional hypoxic volume (FHV) between FAZA-PET scans, compared using the Wilcoxon signed-rank test. The study was closed early due to FAZA availability and the COVID-19 pandemic.

Results: Of the 20 consented patients, 6 were excluded due to no FAZA uptake and 1 withdrew. FHV of 10 patients in the metformin arm decreased by an average of 10.2% (44.4%-34.2%) ± SD 16.9% after 1 week of metformin, compared with an average increase of 4.7% (29.1%-33.8%) ± 11.5% for the 3 controls (P = 0.027). Those with FHV reduction after metformin had significantly lower MATE2 expression. With a median follow-up of 2.8 years, the 2-year disease-free survival was 67% for the metformin arm versus 33% for controls (P = 0.09).

Conclusions: Metformin decreased cervical tumor hypoxia in this trial that selected for patients with hypoxic tumor. See related commentary by Lyng et al., p. 5233.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-22-1665DOI Listing

Publication Analysis

Top Keywords

tumor hypoxia
16
cervical cancer
12
metformin
10
phase randomized
8
randomized trial
8
faza uptake
8
hypoxic tumor
8
week metformin
8
metformin arm
8
tumor
7

Similar Publications

Clear cell kidney cancers are characterized both by conserved oncogenic driver events and by marked intratumor genetic and phenotypic heterogeneity, which help drive tumor progression, metastasis, and resistance to therapy. How these are reflected in transcriptional programs within the cancer and stromal cell components remains an important question with the potential to drive novel therapeutic approaches to treating cancer. To better understand these programs, we perform single-cell transcriptomics on 75 multi-regional biopsies from kidney tumors and normal kidney.

View Article and Find Full Text PDF

Hypoxia, a phenomenon that occurs when the oxygen level in tissues is lower than average, is commonly observed in human solid tumors. For oncological treatment, the hypoxic environment often results in radioresistance and chemoresistance. In this study, a new multifunctional oxygen carrier, carboxymethyl hexanoyl chitosan (CHC) nanodroplets decorated with perfluorohexane (PFH) and superparamagnetic iron oxide (SPIO) nanodroplets (SPIO@PFH-CHC), was developed and investigated.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common and lethal type of primary liver cancer, frequently arising from chronic liver injury and inflammation. Despite treatment advancements, HCC prognosis remains poor, emphasizing the need for effective preventive and therapeutic strategies. This study investigates the hepatoprotective and anti-tumor effects of Hongjam, a steamed freeze-dried silkworm powder, in a diethylnitrosamine (DEN) and thioacetamide (TAA)-induced HCC mouse model.

View Article and Find Full Text PDF

Sonodynamic therapy (SDT), which is non-invasive and controllable has the potential to treat triple-negative breast cancer (TNBC). However, the hypoxia and immunosuppressive tumor microenvironment (TME) often block the production of reactive oxygen species and the induction of SDT-activated immunogenic cell death, thus limiting the activation of adaptive immune responses. To alleviate these challenges, we proposed the development of a multifunctional biomimetic nanoplatform (mTSeIR), which was designed with diselenide-conjugated sonosensitizers and tirapazamine (TPZ), encapsulated within M1 macrophage membrane.

View Article and Find Full Text PDF

Background: Bone marrow mesenchymal stem cells (BMSCs) are a crucial component of the tumor microenvironment (TME), with hypoxic conditions promoting their migration to tumors. Exosomes play a vital role in cell-to-cell communication within the TME. Hypoxic TME have a great impact on the release, uptake and biofunctions of exosomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!