Clinically identified genetic variants in ion channels can be benign or cause disease by increasing or decreasing the protein function. As a consequence, therapeutic decision-making is challenging without molecular testing of each variant. Our biophysical knowledge of ion-channel structures and function is just emerging, and it is currently not well understood which amino acid residues cause disease when mutated. We sought to systematically identify biological properties associated with variant pathogenicity across all major voltage and ligand-gated ion-channel families. We collected and curated 3049 pathogenic variants from hundreds of neurodevelopmental and other disorders and 12 546 population variants for 30 ion channel or channel subunits for which a high-quality protein structure was available. Using a wide range of bioinformatics approaches, we computed 163 structural features and tested them for pathogenic variant enrichment. We developed a novel 3D spatial distance scoring approach that enables comparisons of pathogenic and population variant distribution across protein structures. We discovered and independently replicated that several pore residue properties and proximity to the pore axis were most significantly enriched for pathogenic variants compared to population variants. Using our 3D scoring approach, we showed that the strongest pathogenic variant enrichment was observed for pore-lining residues and alpha-helix residues within 5Å distance from the pore axis centre and not involved in gating. Within the subset of residues located at the pore, the hydrophobicity of the pore was the feature most strongly associated with variant pathogenicity. We also found an association between the identified properties and both clinical phenotypes and functional in vitro assays for voltage-gated sodium channels (SCN1A, SCN2A, SCN8A) and N-methyl-D-aspartate receptor (GRIN1, GRIN2A, GRIN2B) encoding genes. In an independent expert-curated dataset of 1422 neurodevelopmental disorder pathogenic patient variants and 679 electrophysiological experiments, we show that pore axis distance is associated with seizure age of onset and cognitive performance as well as differential gain versus loss-of-channel function. In summary, we identified biological properties associated with ion-channel malfunction and show that these are correlated with in vitro functional readouts and clinical phenotypes in patients with neurodevelopmental disorders. Our results suggest that clinical decision support algorithms that predict variant pathogenicity and function are feasible in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9976975PMC
http://dx.doi.org/10.1093/brain/awac305DOI Listing

Publication Analysis

Top Keywords

variant pathogenicity
16
clinical phenotypes
12
pore axis
12
ion channels
8
variant
8
variants ion
8
biological properties
8
properties associated
8
associated variant
8
pathogenic variants
8

Similar Publications

Introduction: Pancreatic cancer arising in the context of BRCA predisposition may benefit from poly(ADP-ribose) polymerase inhibitors. We analyzed real-world data on the impact of olaparib on survival in metastatic pancreatic cancer patients harboring germline BRCA mutations in Italy, where olaparib is not reimbursed for this indication.

Methods: Clinico/pathological data of pancreatic cancer patients with documented BRCA1-2 germline pathogenic variants who had received first-line chemotherapy for metastatic disease were collected from 23 Italian oncology departments and the impact of olaparib exposure on overall survival (OS) was analyzed.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) has been associated with a significant fatality rate and persistent evolution in immunocompromised patients. In this prospective study, we aimed to determine the duration of excretion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 37 Tunisian patients with hematological malignancies (40.5% with lymphoma and 37.

View Article and Find Full Text PDF

Mpox, a zoonotic disease caused by the mpox virus (MPXV), has seen a significant shift in its epidemiological status since 2022, evolving from an initial local outbreak to a global epidemic. This recent outbreak of MPXV mainly emerged in several European and American countries and subsequently spread to over 100 countries and regions worldwide. The rapid evolution of MPXV, coupled with increased international interactions, has led to a gradual rise in mpox cases in certain regions of Asia, mostly involving MPXV clade II and its branch strains.

View Article and Find Full Text PDF

Information on circulating HBV (sub-)genotype, variants, and hepatitis D virus (HDV) coinfection, which vary by geographical area, is crucial for the efficient control and management of HBV. We investigated the genomic characteristics of HBV (with a prevalence of 8.1%) and the prevalence of HDV in Nigeria.

View Article and Find Full Text PDF

Vaccination of COVID-19-convalescent individuals may generate 'hybrid' immunity of enhanced magnitude, durability, and cross-reactive breadth. Our primary goal was to characterize hybrid antibody (Ab) responses in a patient cohort infected with ancestral Wuhan-Hu-1 virus and vaccinated between 6 and 10 months later with the Wuhan-Hu-1-based BNT162b2 mRNA vaccine. We were particularly interested in determining the efficacy of neutralizing Ab responses against subsequently emergent SARS-CoV-2 variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!