How RNA editing keeps an I on physiology.

Am J Physiol Cell Physiol

Division of Cell and Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria.

Published: November 2022

Adenosine deaminases acting on RNAs convert adenosines (A) to inosines (I) in structured or double-stranded RNAs. In mammals, this process is widespread. In the human transcriptome, more than a million different sites have been identified that undergo an ADAR-mediated A-to-I exchange Inosines have an altered base pairing potential due to the missing amino group when compared to the original adenosine. Consequently, inosines prefer to base pair with cytosines but can also base pair with uracil or adenine. This altered base pairing potential not only affects protein decoding at the ribosome but also influences the folding of RNAs and the proteins that can associate with it. Consequently, an A to I exchange can also affect RNA processing and turnover (Nishikura K. 79: 321-349, 2010; Brümmer A, Yang Y, Chan TW, Xiao X. 8: 1255, 2017). All of these events will interfere with gene expression and therefore, can also affect cellular and organismic physiology. As double-stranded RNAs are a hallmark of viral pathogens RNA-editing not only affects RNA-processing, coding, and gene expression but also controls the antiviral response to double-stranded RNAs. Most interestingly, recent advances in our understanding of ADAR enzymes reveal multiple layers of regulation by which ADARs can control antiviral programs. In this review, we focus on the recoding of mRNAs where the altered translation products lead to physiological changes. We also address recent advances in our understanding of the multiple layers of antiviral responses and innate immune modulations mediated by ADAR1.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.00191.2022DOI Listing

Publication Analysis

Top Keywords

double-stranded rnas
12
altered base
8
base pairing
8
pairing potential
8
base pair
8
gene expression
8
advances understanding
8
multiple layers
8
rnas
5
rna editing
4

Similar Publications

Double-stranded RNA orbivirus disrupts the DNA-sensing cGAS-sting axis to prevent type I IFN induction.

Cell Mol Life Sci

January 2025

Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain.

Cyclic GMP-AMP synthase (cGAS) is a DNA sensing cellular receptor that induces IFN-I transcription in response to pathogen and host derived cytosolic DNA and can limit the replication of some RNA viruses. Some viruses have nonetheless evolved mechanisms to antagonize cGAS sensing. In this study, we evaluated the interaction between Bluetongue virus (BTV), the prototypical dsRNA virus of the Orbivirus genus and the Sedoreoviridae family, and cGAS.

View Article and Find Full Text PDF

Apprehending siRNA Machinery and Gene Silencing in Brinjal Shoot and Fruit Borer, Leucinodes orbonalis.

Arch Insect Biochem Physiol

January 2025

Division of Genomic Resources, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India.

RNA interference (RNAi) technology is widely used in gene functional studies and has been shown to be a promising next generation alternative for insect pest management. To understand the efficiency of RNAi machinery in Leucinodes orbonalis (L. orbonalis) Guenee, a destructive pest of eggplant, core RNAi pathway genes Argonaute-2, Dicer-2, Loquacious, and Sid-1 were mined from the transcriptome and characterized.

View Article and Find Full Text PDF

A dual role of Cohesin in DNA DSB repair.

Nat Commun

January 2025

Department of Hematopoietic Biology & Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Cells undergo tens of thousands of DNA-damaging events each day. Defects in repairing double-stranded breaks (DSBs) can lead to genomic instability, contributing to cancer, genetic disorders, immunological diseases, and developmental defects. Cohesin, a multi-subunit protein complex, plays a crucial role in both chromosome organization and DNA repair by creating architectural loops through chromatin extrusion.

View Article and Find Full Text PDF

CRISPR-Cas12a is widely used for genome editing and biomarker detection since it can create targeted double-stranded DNA breaks and promote non-specific DNA cleavage after identifying specific DNA. To mitigate the off-target DNA cleavage of Cas12a, we previously developed a Cas12a variant (FnoCas12a ) by introducing double proline substitutions (K969P/D970P) in a conserved helix called the bridge helix (BH). In this work, we used cryogenic electron microscopy (cryoEM) to understand the molecular mechanisms of BH- mediated activation of Cas12a.

View Article and Find Full Text PDF

Segment-specific promoter activity for RNA synthesis in the genome of Oz virus, genus Thogotovirus.

Virology

January 2025

Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan. Electronic address:

Oz virus (OZV), a tick-borne, six-segmented negative-strand RNA virus in the genus Thogotovirus, caused a fatal human infection in Japan in 2023. To study viral RNA synthesis, we developed an OZV minigenome assay using mammalian cells. This revealed variations in promoter activities among the six genome segments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!