A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effects of galectin-3 protein on UVA-induced damage in retinal pigment epithelial cells. | LitMetric

Effects of galectin-3 protein on UVA-induced damage in retinal pigment epithelial cells.

Photochem Photobiol Sci

Department of Morphology and Genetics, Universidade Federal de São Paulo (UNIFESP), Rua Botucatu 740, Ed. Lemos Torres-3º andar, São Paulo, SP, 04023-900, Brazil.

Published: January 2023

AI Article Synopsis

  • * In a study using human RPE cells (ARPE-19), different concentrations of Gal-3 were tested before exposing the cells to UVA radiation, which normally reduces cell viability significantly, especially with longer exposure times.
  • * Results showed that pretreating the cells with Gal-3 improved their survival rates after UVA exposure and reduced oxidative stress, indicating that Gal-3 can help protect RPE cells from damage.

Article Abstract

Several inflammatory molecules have been suggested as biomarkers of age-related macular degeneration (AMD). Galectin-3 (Gal-3), which has been shown to have a protective role in corneal injury by promoting epithelial cells adhesion and migration to the extracellular matrix, is also highly expressed in the retinal pigment epithelium (RPE) of patients with AMD. This study evaluated the role of Gal-3 in an in vitro model of UVA-induced RPE damage, as a proof-of-concept. ARPE-19 cells (human RPE cell line), were incubated with Gal-3 at 0.5-2.5 µg/mL concentrations prior to UVA irradiation for 15, 30, and 45 min, which resulted in accumulated doses of 2.5, 5, and 7.5 J/cm, respectively. After 24 h incubation, MTT and LDH assays, immunofluorescence, and ELISA were performed. UVA irradiation for 15, 30, and 45 min proved to reduce viability in 83%, 46%, and 11%, respectively. Based on the latter results, we chose the intermediate dose (5-J/cm) for further analysis. Pretreatment with Gal-3 at concentrations > 1.5 µg/mL showed to increase the viability of UVA-irradiated cells (~ 75%) compared to untreated cells (64%). Increased levels of cleaved caspase 3, a marker of cell death, were detected in the ARPE cells after UVA irradiation with or without addition of exogenous Gal-3. The inhibitory effect of Gal-3 on UVA-induced cell damage was characterized by decreased ROS levels and increased p38 activation, as detected by fluorescence analysis. In conclusion, our study suggests a photoprotective effect of Gal-3 on RPE by reducing oxidative stress and increasing p38 activation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43630-022-00294-0DOI Listing

Publication Analysis

Top Keywords

uva irradiation
12
retinal pigment
8
epithelial cells
8
irradiation 45 min
8
p38 activation
8
gal-3
7
cells
6
effects galectin-3
4
galectin-3 protein
4
protein uva-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!