A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A first proof-of-concept for the non-invasive, time-efficient measurement of the plasma sodium concentration for individualized dialysis. | LitMetric

Dialysis-induced changes in plasma sodium concentration may cause undesirable side effects. To prevent these, the sodium content in dialysis fluid has to be individualized based on the patient's plasma sodium concentration. In this paper, we describe a simple conductivity based method for measuring the plasma sodium concentration. The method is based on performing a bypass during which the residual volume on the dialysate side of the dialyzer at least partially adopts the sodium concentration on the blood side. The conductivity at dialysate outlet of the dialyzer after the end of bypass corresponds to the sodium concentration. We show that already 14 s of bypass are sufficient to subsequently measure a conductivity that correlates with the blood-side sodium concentration. Thus, the short bypass method allows a time saving of 88% compared to the long bypass of 120 s. In vitro experiments with bovine blood show that plasma sodium concentration can be non-invasively and time-efficiently measured during dialysis. Bland Altman analysis reveals a bias of 0.28 mmol/l and limits of agreement of -3.17 and 3.74 mmol/l for the long bypass. For the short bypass, bias is 0.09 mmol/l and limits are -3.90 and 4.08 mmol/l. Since the method presented is based on established conductivity cells, no additional sensors are required, so that the method could be easily implemented in dialysis machines. In future, performing a bypass at the beginning of a treatment may be used to adjust the composition of dialysis fluid individually for each patient.

Download full-text PDF

Source
http://dx.doi.org/10.1177/03913988221120831DOI Listing

Publication Analysis

Top Keywords

sodium concentration
32
plasma sodium
20
sodium
9
concentration
8
dialysis fluid
8
bypass
8
performing bypass
8
short bypass
8
long bypass
8
plasma
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!