Bud dormancy, which enables damage from cold temperatures to be avoided during winter and early spring, is an important adaptive mechanism of deciduous fruit trees to cope with seasonal environmental changes and temperate climates. Understanding the regulatory mechanism of bud break in fruit trees is highly important for the artificial control of bud break and the prevention of spring frost damage. However, the molecular mechanism underlying the involvement of MYB TFs during the bud break of peach is still unclear. In this study, we isolated and identified the (Prupe.5G240000.1) gene from peach; this gene is downregulated in the process of bud break, upregulated in response to ABA and downregulated in response to GA. Overexpression of suppresses the germination of transgenic tomato seeds. In addition, Y2H, Bimolecular fluorescence complementation (BiFC) assays verified that interacts with a RING-type E3 ubiquitin ligase, , which is upregulated during bud break may positively regulate peach bud break by ubiquitination-mediated degradation of . Our findings are the first to characterize the molecular mechanisms underlying the involvement of MYB TFs in peach bud break, increasing awareness of dormancy-related molecules to avoid bud damage in perennial deciduous fruit trees.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413399PMC
http://dx.doi.org/10.3389/fpls.2022.971482DOI Listing

Publication Analysis

Top Keywords

bud break
32
peach bud
12
fruit trees
12
bud
10
break
8
deciduous fruit
8
underlying involvement
8
involvement myb
8
myb tfs
8
peach
5

Similar Publications

CsCBF1/CsZHD9-CsMADS27, a critical gene module controlling dormancy and bud break in tea plants.

Plant J

December 2024

Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs/National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.

Tea plants are perennial evergreen woody crops that originated in low latitudes but have spread to high latitudes. Bud dormancy is an important adaptation mechanism to low temperatures, and its timing is economically significant for tea production. However, the core molecular networks regulating dormancy and bud break in tea plants remain unclear.

View Article and Find Full Text PDF

Spatiotemporal Molecular Architecture of Lineage Allocation and Cellular Organization in Tooth Morphogenesis.

Adv Sci (Weinh)

December 2024

Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China.

Article Synopsis
  • The study focuses on the complex development of teeth in vertebrates, utilizing advanced genomic techniques to explore how teeth are formed and organized over time and space.
  • It identifies twelve spatial compartments and seventeen unique cell clusters that play crucial roles in tooth development, revealing that most lineage species appear earlier in the tooth bud than previously thought.
  • The research uncovers a new mode of tooth tissue arrangement and highlights the interplay between mechanical signals and biochemical processes in driving tooth formation, while also linking genes to tooth abnormalities.
View Article and Find Full Text PDF
Article Synopsis
  • Bud dormancy is crucial for flowering and fruit production, controlled by genetic and environmental factors, but specific mechanisms in temperate trees like Quercus suber are not well understood.
  • Research indicates that the genes CENTRORADIALIS-LIKE (CENL) and DORMANCY-ASSOCIATED PROTEIN 1 (QsDYL1) are involved in growth cessation and serve as markers for dormancy in Q. suber.
  • Analysis of gene expression and epigenetic changes during dormancy reveals that different chromatin modifiers influence the transition between dormancy and active bud formation, providing insights into how trees may adapt to climate change.
View Article and Find Full Text PDF

Crop phenology is very important in regular crop monitoring. Generally, phenology is monitored through field observation surveys or satellite data. The relationships between ground observations and remotely sensed derived phenological data can enable near-real-time monitoring over large areas, which has never been attempted on hazelnuts.

View Article and Find Full Text PDF

Delineating Molecular Regulatory of Flavonoids Indicated by Transcriptomic and Metabolomics Analysis during Flower Development in .

Int J Mol Sci

September 2024

Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230001, China.

Flavonoids are pharmacologically active compounds in flowers of '' (); however, the molecular regulatory network governing flower development remains largely elusive. Flower samples were collected at four stages, namely budding (BD), bud breaking (BB), early blooming (EB), and full blooming (FB), for omics analysis. We revealed distinct transcriptional regulation patterns at these four stages of the flower from the perspective of differentially expressed unigenes (DEGs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!