Geitonogamy is inevitable in hermaphrodite and monecious. Even for self-incompatible species, the negative effects of self-pollen are unavoidable when geitonogamous or self-mating occurs. However, the influence of self-pollen on consecutive development of flowers (e.g., fruiting and seeding) was seldom evaluated. Here, the self-incompatible monecious species, , was used to estimate the influence of self-pollen deposition. We evaluated the extent of pollen limitation and geitonogamous mating under natural conditions by count of stigmatic pollen load and pollen tracking experiment. Hand pollination with different amount and combinations of self vs. cross pollen grains was applied to detect the response of fruit and seed set. The results showed that geitonogamy and pollen limitation occurred under natural conditions in . Carpel numbers, ratio of self- and cross-pollen, and the interactive effect of ratio of self- and cross-pollen and total mixed pollen numbers, and not total pollen grain number, determined the effect of self-pollen on female reproductive success. The effect of self-pollen depended on its intensity. In general, the transfer of self-pollen significantly affected young fruit set. However, a little self-pollen together with cross-pollen did not reduce young fruit production. Although self-incompatible plants have evolved physiological mechanisms that reduce self-fertilization, our results provide new insights into the effects of self-pollen and the adaptive significance of self-incompatible monecious species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399832PMC
http://dx.doi.org/10.3389/fpls.2022.935217DOI Listing

Publication Analysis

Top Keywords

influence self-pollen
12
self-pollen deposition
8
female reproductive
8
reproductive success
8
self-pollen
8
effects self-pollen
8
self-incompatible monecious
8
monecious species
8
pollen limitation
8
natural conditions
8

Similar Publications

Simulation analyses of the evolution of intra-inflorescence flowering patterns assuming selection on anthesis interval among individual flowers.

J Theor Biol

November 2024

Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan. Electronic address:

What conditions select flowering patterns within inflorescences, or variation in the anthesis interval within inflorescences among plants? Under what conditions are gradual blooming and simultaneous blooming, both traits related to floral display size, advantageous? We constructed a simulation model in which the opening times and longevities of individual flowers within inflorescences, the sizes of attractive structures of individual flowers, and the numbers of ovules and pollen grains produced by individual flowers evolve. Individual plants in the population compete for pollinators, and plants are selected by pollinators according to their floral display sizes and amounts of resources allocated to attractive structures. We found that, if the proportion of pollen on a pollinator deposited on a stigma was low, gradual blooming did not evolve even if inbreeding depression was greater than 0.

View Article and Find Full Text PDF

The intervention of nectar robbers in plant pollination systems will cause some pollinators to modify their foraging behavior to act as secondary robbers, consequently adopting a mixed foraging strategy. The influence of nectar robbing on pollinator behavior may be affected by spatio-temporal difference of robbing intensity, and consequently, may have different effects on the pollination of host plants. However, whether and how the nectar robbing might influence pollinators under different robbing intensity still needs further investigation.

View Article and Find Full Text PDF

Geitonogamy is inevitable in hermaphrodite and monecious. Even for self-incompatible species, the negative effects of self-pollen are unavoidable when geitonogamous or self-mating occurs. However, the influence of self-pollen on consecutive development of flowers (e.

View Article and Find Full Text PDF

Premise: Morphological and developmental changes as flowers age can impact patterns of mating. At the same time, direct or indirect costs of floral longevity can alter their fitness outcomes. This influence has been less appreciated, particularly with respect to the timing of selfing.

View Article and Find Full Text PDF

Floral sexual organ (stamen and pistil) movements are selective adaptations that have different functions in male-female reproduction and the evolution of flowering plants. However, the significance of stamen movements in the spatial-temporal function and separation of male and female organs has not been experimentally determined in species exhibiting floral temporal closure. The current study investigated the role of slow stamen (group-by-group) movement in male-female sexual function, and the effect of stamen movement on pollen removal, male-male and male-female interference, and mating patterns of , a plant with temporal floral closure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!