Plants dynamically manipulate their gene expression in acclimation to the challenging environment. Hereinto, the histone methylation tunes the gene transcription modulation of the chromatin accessibility to transcription machinery. Osmotic stress, which is caused by water deprivation or high concentration of ions, can trigger remarkable changes in histone methylation landscape and genome-wide reprogramming of transcription. However, the dynamic regulation of genes, especially how stress-inducible genes are timely epi-regulated by histone methylation remains largely unclear. In this review, recent findings on the interaction between histone (de)methylation and osmotic stress were summarized, with emphasis on the effects on histone methylation profiles imposed by stress and how histone methylation works to optimize the performance of plants under stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399788 | PMC |
http://dx.doi.org/10.3389/fpls.2022.967607 | DOI Listing |
Int J Cancer
January 2025
Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
Prostate cancer is a common malignancy that in 5%-30% leads to treatment-resistant and highly aggressive disease. Metastasis-potential and treatment-resistance is thought to rely on increased plasticity of the cancer cells-a mechanism whereby cancer cells alter their identity to adapt to changing environments or therapeutic pressures to create cellular heterogeneity. To understand the molecular basis of this plasticity, genomic studies have uncovered genetic variants to capture clonal heterogeneity of primary tumors and metastases.
View Article and Find Full Text PDFMol Cancer Res
January 2025
Yeshiva University, New York, NY, United States.
WD repeat domain 77 protein (WDR77), a WD-40 domain-containing protein, is a crucial regulator of cellular pathways in cancer progression. While much of the past research on WDR77 has focused on its interaction with PRMT5 in histone methylation, WDR77's regulatory functions extend beyond this pathway, influencing diverse mechanisms such as mRNA translation, chromatin assembly, cell cycle regulation, and apoptosis. WDR77 is a key regulator of cell cycle progression, regulating the transition from the G1 phase.
View Article and Find Full Text PDFInt J Biochem Cell Biol
January 2025
Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; Nottingham NIHR Biomedical Research Centre, Nottingham, UK; Biodiscovery Institute, University Park, University of Nottingham, UK. Electronic address:
Lung fibrosis, including idiopathic pulmonary fibrosis (IPF), is a complex and devastating disease characterised by the progressive scarring of lung tissue leading to compromised respiratory function. Aberrantly activated fibroblasts deposit extracellular matrix components into the surrounding lung tissue, impairing lung function and capacity for gas exchange. Both genetic and epigenetic factors have been found to play a role in the pathogenesis of lung fibrosis, with emerging evidence highlighting the interplay between these two regulatory mechanisms.
View Article and Find Full Text PDFEpigenomes
January 2025
Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
The skin, the largest organ of the human body, plays numerous essential roles, including protection against environmental hazards and the regulation of body temperature. The processes of skin homeostasis and ageing are complex and influenced by many factors, with epigenetic mechanisms being particularly significant. Epigenetics refers to the regulation of gene expression without altering the underlying DNA sequence.
View Article and Find Full Text PDFJ Xenobiot
December 2024
Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India.
Addressing the consequences of exposure to endocrine-disrupting chemicals (EDCs) demands thorough research and elucidation of the mechanism by which EDCs negatively impact women and lead to breast cancer (BC). Endocrine disruptors can affect major pathways through various means, including histone modifications, the erroneous expression of microRNA (miRNA), DNA methylation, and epigenetic modifications. However, it is still uncertain if the epigenetic modifications triggered by EDCs can help predict negative outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!