Inositol pyrophosphates (PP-InsPs), derivatives of inositol hexakisphosphate (phytic acid, InsP) or lower inositol polyphosphates, are energy-rich signaling molecules that have critical regulatory functions in eukaryotes. In plants, the biosynthesis and the cellular targets of these messengers are not fully understood. This is because, in part, plants do not possess canonical InsP kinases and are able to synthesize PP-InsP isomers that appear to be absent in yeast or mammalian cells. This review will shed light on recent discoveries in the biosynthesis of these enigmatic messengers and on how they regulate important physiological processes in response to abiotic and biotic stresses in plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403785 | PMC |
http://dx.doi.org/10.3389/fpls.2022.944515 | DOI Listing |
Physiol Plant
January 2025
Institute for Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas, Seville, Spain.
In the context of climate changing environments, microalgae can be excellent organisms to understand molecular mechanisms that activate survival strategies under stress. Chlamydomonas reinhardtii signalling mutants are extremely useful to decipher which strategies photosynthetic organisms use to cope with changeable environments. The mutant vip1-1 has an altered profile of pyroinositol polyphosphates (PP-InsPs), which are signalling molecules present in all eukaryotes and have been connected to P signalling in other organisms including plants, but their implications in other nutrient signalling are still under evaluation.
View Article and Find Full Text PDFBiomolecules
January 2025
Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
The Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) is a multidomain protein consisting of two protein-protein interaction domains, the Src homology 2 (SH2) domain, and the proline-rich region (PRR), as well as three phosphoinositide-binding domains, the pleckstrin homology-like (PHL) domain, the 5-phosphatase (5PPase) domain, and the C2 domain. SHIP1 is commonly known for its involvement in the regulation of the PI3K/AKT signaling pathway by dephosphorylation of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P) at the D5 position of the inositol ring. However, the functional role of each domain of SHIP1 for the regulation of its enzymatic activity is not well understood.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Basic & Translational Sciences, School of Dental Medicine, University of Pennsylvania, USA.
Inositol polyphosphate-5-phosphatase E (INPP5E) is a 5-phosphatase critically involved in diverse physiological processes, including embryonic development, neurological function, immune regulation, hemopoietic cell dynamics, and macrophage proliferation, differentiation, and phagocytosis. Mutations in cause Joubert and Meckel-Gruber syndromes in humans; these are characterized by brain malformations, microphthalmia, situs inversus, skeletal abnormalities, and polydactyly. Recent studies have demonstrated the key role of INPP5E in governing intracellular processes like endocytosis, exocytosis, vesicular trafficking, and membrane dynamics.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
Serum response factor (SRF) is a master transcription factor that regulates immediate early genes and cytoskeletal remodeling genes. Despite its importance, the mechanisms through which SRF stably associates with its cognate promoter remain unknown. Our biochemical and protein-induced fluorescence enhancement analyses showed that the binding of SRF to serum response element was significantly increased by inositol polyphosphate multikinase (IPMK), an SRF cofactor.
View Article and Find Full Text PDFBiochemistry
January 2025
Gavin Herbert Eye Institute - Center for Translational Vision Research, Department of Ophthalmology, University of California, Irvine, Irvine, California 92697, United States.
Arrestins halt signal transduction by binding to the phosphorylated C-termini of activated G protein-coupled receptors. Arrestin-1, the first subtype discovered, binds to rhodopsin in rod cells. Mutations in , the gene encoding Arrestin-1, are linked to Oguchi disease, characterized by delayed dark adaptation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!