A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

AI-enabled prediction of video game player performance using the data from heterogeneous sensors. | LitMetric

The emerging progress of video gaming and eSports lacks the tools for ensuring high-quality analytics and training in professional and amateur eSports teams. We report on an Artificial Intelligence (AI) enabled solution for predicting the eSports player in-game performance using exclusively the data from sensors. For this reason, we collected the physiological, environmental, and the smart chair data from professional and amateur players. The player performance is assessed from the game logs in a multiplayer game for each moment of time using a recurrent neural network. We have investigated an attention mechanism improves the generalization of the network and provides a straightforward feature importance as well. The best model achieves Area Under the Receiver Operating Characteristic Curve (ROC AUC) score 0.73 in predicting whether a player will perform better or worse in the next 240 seconds based on in-game metrics. The prediction of the performance of a particular player is realized although their data are not utilized in the training set. The proposed solution has a number of promising applications for professional eSports teams and amateur players, such as a learning tool or performance monitoring system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9395877PMC
http://dx.doi.org/10.1007/s11042-022-13464-0DOI Listing

Publication Analysis

Top Keywords

player performance
8
professional amateur
8
esports teams
8
amateur players
8
player
5
performance
5
ai-enabled prediction
4
prediction video
4
video game
4
game player
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!