A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tooth CT Image Segmentation Method Based on the U-Net Network and Attention Module. | LitMetric

Tooth CT Image Segmentation Method Based on the U-Net Network and Attention Module.

Comput Math Methods Med

School of Electrical Engineering, Tongling University, Tongling 244000, China.

Published: August 2022

Traditional image segmentation methods often encounter problems of low segmentation accuracy and being time-consuming when processing complex tooth Computed Tomography (CT) images. This paper proposes an improved segmentation method for tooth CT images. Firstly, the U-Net network is used to construct a tooth image segmentation model. A large number of feature maps in downsampling are supplemented to downsampling to reduce information loss. At the same time, the problem of inaccurate image segmentation and positioning is solved. Then, the attention module is introduced into the U-Net network to increase the weight of important information and improve the accuracy of network segmentation. Among them, subregion average pooling is used instead of global average pooling to obtain spatial features. Finally, the U-Net network combined with the improved attention module is used to realize the segmentation of tooth CT images. And based on the image collection provided by West China Hospital for experimental demonstration, compared with other algorithms, our method has better segmentation performance and efficiency. The contours of the teeth obtained are clearer, which is helpful to assist the doctor in the diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9417771PMC
http://dx.doi.org/10.1155/2022/3289663DOI Listing

Publication Analysis

Top Keywords

image segmentation
16
u-net network
16
attention module
12
segmentation
9
tooth image
8
segmentation method
8
tooth images
8
average pooling
8
tooth
5
network
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!