AI Article Synopsis

Article Abstract

Diffuse large B-cell lymphoma (DLBCL), which is considered to be the most common subtype of lymphoma, is an aggressive tumor. Necroptosis, a novel type of programmed cell death, plays a bidirectional role in tumors and participates in the tumor microenvironment to influence tumor development. Targeting necroptosis is an intriguing direction, whereas its role in DLBCL needs to be further discussed. We obtained 17 DLBCL-associated necroptosis-related genes by univariate cox regression screening. We clustered in GSE31312 depending on their expressions of these 17 genes and analyzed the differences in clinical characteristics between different clusters. To investigate the differences in prognosis across distinct clusters, the Kaplan-Meier method was utilized. The variations in the tumor immune microenvironment (TME) between distinct necroptosis-related clusters were investigated via "ESTIMATE", "Cibersort" and single-sample geneset enrichment analysis (ssGSEA). Finally, we constructed a 6-gene prognostic model by lasso-cox regression and subsequently integrated clinical features to construct a prognostic nomogram. Our analysis indicated stable but distinct mechanism of action of necroptosis in DLBCL. Based on necroptosis-related genes and cluster-associated genes, we identified three groups of patients with significant differences in prognosis, TME, and chemotherapy drug sensitivity. Analysis of immune infiltration in the TME showed that cluster 1, which displayed the best prognosis, was significantly infiltrated by natural killer T cells, dendritic cells, CD8 T cells, and M1 macrophages. Cluster 3 presented M2 macrophage infiltration and the worst prognosis. Importantly, the prognostic model successfully differentiated high-risk from low-risk patients, and could forecast the survival of DLBCL patients. And the constructed nomogram demonstrated a remarkable capacity to forecast the survival time of DLBCL patients after incorporating predictive clinical characteristics. The different patterns of necroptosis explain its role in regulating the immune microenvironment of DLBCL and the response to R-CHOP treatment. Systematic assessment of necroptosis patterns in patients with DLBCL will help us understand the characteristics of tumor microenvironment cell infiltration and aid in the development of tailored therapy regimens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403718PMC
http://dx.doi.org/10.3389/fgene.2022.911443DOI Listing

Publication Analysis

Top Keywords

diffuse large
8
tumor microenvironment
8
necroptosis-related genes
8
clinical characteristics
8
differences prognosis
8
immune microenvironment
8
prognostic model
8
forecast survival
8
dlbcl patients
8
dlbcl
7

Similar Publications

Tumour 'bulk' has historically been considered an important prognostic marker and clinical tool to guide treatment in patients with lymphoma. However, its use and definitions in trial designs varies significantly and it is unclear how this has influenced the relevance of bulk in contemporary practice. This comprehensive literature review evaluated the definitions, applications and prognostic impact of bulk in phase 3 randomised trials in four major lymphoma subtypes.

View Article and Find Full Text PDF

Circulating tumor DNA (ctDNA) levels can help predict outcomes in diffuse large B-cell lymphoma (DLBCL), but its integration with DLBCL molecular clusters remains unexplored. Using the LymphGen tool in 77 DLBCL with both ctDNA and tissue biopsy, a 95.8% concordance rate in molecular cluster assignment was observed, showing the reproducibility of molecular clustering on ctDNA.

View Article and Find Full Text PDF

Epcoritamab, a bispecific T-cell engager (BiTE) antibody targeting CD3 and CD20, has shown significant efficacy in treating refractory diffuse large B-cell lymphoma (DLBCL). However, its use can lead to severe side effects, such as tumor flare. Here, we report the case of an 84-year-old male with relapsed DLBCL who developed fatal unilateral pleural effusion following Epcoritamab treatment.

View Article and Find Full Text PDF

YOLOSeg with applications to wafer die particle defect segmentation.

Sci Rep

January 2025

Department of Industrial Engineering and Management, Ming Chi University of Technology, New Taipei City, 243, Taiwan.

This study develops the you only look once segmentation (YOLOSeg), an end-to-end instance segmentation model, with applications to segment small particle defects embedded on a wafer die. YOLOSeg uses YOLOv5s as the basis and extends a UNet-like structure to form the segmentation head. YOLOSeg can predict not only bounding boxes of particle defects but also the corresponding bounding polygons.

View Article and Find Full Text PDF

Design of antiferroelectric polarization configuration for ultrahigh capacitive energy storage via increasing entropy.

Nat Commun

January 2025

Beijing Advanced Innovation Center for Materials Genome Engineering, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing, China.

Electric field induced antiferroelectric-ferroelectric phase transition is a double-edged sword for energy storage properties, which not only offers a congenital superiority with substantial energy storage density but also poses significant challenges such as large polarization hysteresis and poor efficiency, deteriorating the operation and service life of capacitors. Here, entropy increase effect is utilized to simultaneously break the long-range antiferroelectric order and locally adjust the fourfold commensurate modulated polarization configuration, leading to a breakthrough in the trade-off between recoverable energy storge density (14.8 J cm) and efficiency (90.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!