The interaction of exoribonuclease (ExoN) nonstructural protein (NSP14) with NSP10 co-factors is crucial for high-fidelity proofreading activity of coronavirus replication and transcription. Proofreading function is critical for maintaining the large genomes to ensure replication proficiency; therefore, while maintaining the viral replication fitness, quick resistance has been reported to the nucleotide analogue (NA) drugs. Therefore, targeting the NSP14 and NSP10 interacting interface with small molecules or peptides could be a better strategy to obstruct replication processes of coronaviruses (CoVs). A comparative study on the binding mechanism of NSP10 with the NSP14 ExoN domain of SARS-CoV-2, SARS-CoV, MERS-CoV, and four SARS-CoV-2 NSP14 complexes has been carried out. Protein-protein interaction (PPI) dynamics, per-residue binding free energy (BFE) analyses, and the identification of interface hotspot residues have been studied using molecular dynamics simulations and various computational tools. The BFE of the SARS-CoV NSP14-NSP10 complex was higher when compared to novel SARS-CoV-2 and MERS. However, SARS-CoV-2 NSP14 systems display a higher BFE as compared to the wild type (WT) but lower than SARS-CoV and MERS. Despite the high BFE, the SARS-CoV NSP14-NSP10 complex appears to be structurally more flexible in many regions especially the catalytic site, which is not seen in SARS-CoV-2 and its mutant or MERS complexes. The significantly high residue energy contribution of key interface residues and hotspots reveals that the high binding energy between NSP14 and NSP10 may enhance the functional activity of the proofreading complex, as the NSP10-NSP14 interaction is essential in maintaining the stability of the ExoN domain for the replicative fitness of CoVs. The factors discussed for SARS-CoV-2 complexes may be responsible for NSP14 ExoN having a high replication proficiency, significantly leading to the evolution of new variants of SARS-CoV-2. The NSP14 residues V66, T69, D126, and I201and eight residues of NSP10 (L16, F19, V21, V42, M44, H80, K93, and F96) are identified as common hotspots. Overall, the interface area, hotspot locations, bonded/nonbonded contacts, and energies between NSP14 and NSP10 may pave a way in designing potential inhibitors to disrupt NSP14-NSP10 interactions of CoVs especially SARS-CoV-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9397572PMC
http://dx.doi.org/10.1021/acsomega.2c03007DOI Listing

Publication Analysis

Top Keywords

nsp14 nsp10
16
sars-cov-2 nsp14
12
nsp14
10
sars-cov-2
9
nsp10 nsp14
8
sars-cov-2 sars-cov
8
sars-cov mers-cov
8
replication proficiency
8
nsp14 exon
8
exon domain
8

Similar Publications

Coronaviruses (CoVs) encode non-structural proteins (nsp's) 1-16, which assemble to form replication-transcription complexes that function in viral RNA synthesis. All CoVs encode a proofreading 3'-5' exoribonuclease in non-structural protein 14 (nsp14-ExoN) that mediates proofreading and high-fidelity replication and is critical for other roles in replication and pathogenesis. The enzymatic activity of nsp14-ExoN is enhanced in the presence of the cofactor nsp10.

View Article and Find Full Text PDF

Remdesivir inhibits the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp; Nsp12). Here, we conducted viral resistance analyses from the Phase 3 PINETREE trial of remdesivir in nonhospitalized participants at risk of severe COVID-19. Nasopharyngeal swabs (collected at baseline [Day 1], Days 2, 3, 7, and 14) were eligible for analysis if their viral load was above the lower limit of quantification for the RT-qPCR assay (2228 copies/mL).

View Article and Find Full Text PDF
Article Synopsis
  • The development of antiviral drugs for SARS-CoV-2 is essential due to limited treatment options and the possibility of reinfection after vaccination.
  • Two key viral targets for drug development are the 3'-5' exoribonuclease (ExoN) and the 2'-O-methyltransferase (2'-O-MTase), which are crucial for the virus's survival.
  • The study utilizes target-directed dynamic combinatorial chemistry (tdDCC) to find compounds that inhibit the interactions of essential viral proteins, resulting in a new class of inhibitors that show antiviral activity against coronaviruses.
View Article and Find Full Text PDF

Identification of adenosine analogues as nsp14 N7‑methyltransferase inhibitors for treating coronaviruses infection.

Bioorg Chem

December 2024

Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, College of Science, Academy for Advanced Interdisciplinary Studies and Medi-X Pingshan, Southern University of Science and Technology, Shenzhen, Guangdong 518000, China. Electronic address:

Coronaviruses are RNA viruses that have coevolved with humans and animals over time, exhibiting high mutation rates and mortality rates upon epidemic outbreaks. The nonstructural protein (nsp14) is crucial for various coronaviruses processes, including genome replication, protein translation, virus particle assembly, and evasion of host immunity via RNA methylation modification. In this study, a series of adenosine analogs were designed, synthesized, and evaluated for their inhibitory activities.

View Article and Find Full Text PDF
Article Synopsis
  • Coronaviruses encode 16 nonstructural proteins that form replication-transcription complexes crucial for viral RNA synthesis, with nsp14 acting as a key exoribonuclease for proofreading and replication fidelity.
  • Mutations introduced at the nsp14-nsp10 interface in murine hepatitis virus led to varying levels of impairments in replication and exonuclease activity, highlighting the importance of this interaction.
  • The study's findings emphasize the potential of targeting the nsp14-10 interface for developing viral inhibitors and improving understanding of coronavirus pathogenesis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!