The effect of Chaihu Shugan pills (CHSG) on the pharmacokinetics of duloxetine and its metabolite 4-hydroxyduloxetine in beagle dogs was investigated by establishing an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to simultaneously measure the concentrations of duloxetine and 4-hydroxyduloxetine in beagle dog plasma. Duloxetine and 4-hydroxyduloxetine were separated on the UPLC-C18 column after acetonitrile precipitation and detected by mass spectrometry with multireaction detection mode (MRM). Six adult healthy beagle dogs (weighing 7-9 kg, male and female) were randomly selected and examined for a single-dose administration of duloxetine hydrochloride (2 mg/kg, control group) and oral administration of CHSG (0.3 g/kg) twice daily for 15 consecutive days followed by a single-dose administration of duloxetine hydrochloride (2 mg/kg, experimental group) using the self-control method. All plasma samples were treated in the same way, and then the concentrations of duloxetine and 4-hydroxyduloxetine were determined using the established UPLC-MS/MS method. The obtained data were subjected to DAS 2.0 software to calculate the pharmacokinetic parameters, and SPSS 20.0 software was used to compare the differences between the two groups. Duloxetine and 4-hydroxyduloxetine had a good linear relationship in the ranges of 1-1000 ng/ml and 0.1-100 ng/ml, and the lower limits of quantification (LLOQ) were 1 ng/mL and 0.1 ng/ml, respectively. The precision, accuracy, extraction recovery, matrix effect, and stability meet the requirements of the guiding principles. After combination with CHSG, and AUC of duloxetine decreased by 49.33% and 13.08%, respectively, and was shortened to 10.17 h; and AUC of 4-hydroxyduloxetine decreased by 71.47% and 48.78%, respectively, and was shortened to 7.97 h. The UPLC-MS/MS method was fully developed to simultaneously measure the plasma concentration of duloxetine and its metabolite 4-hydroxyduloxetine in beagle dogs. CHSG could slow down the absorption of duloxetine, induce the metabolism of duloxetine and 4-hydroxyduloxetine in beagle dogs, and reduce plasma exposure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402319 | PMC |
http://dx.doi.org/10.1155/2022/2350560 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!