seeds (DS), (AM), and their formulas are widely used to treat heart failure caused by various cardiac diseases in traditional Chinese medicine practice. However, the molecular mechanism of action of DS and AM has not been completely understood. Herein, we first used mass spectrometry coupled to UPLC to characterize the chemical components of DS and AM decoctions, then applied MS-based quantitative proteomic analysis to profile protein expression in the heart of rats with isoproterenol-induced cardiomyopathy (ISO-iCM) before and after treated with DS alone or combined with AM, astragaloside IV (AS4), calycosin-7-glucoside (C7G), and Astragalus polysaccharides (APS) from AM. We demonstrated for the first time that DS decoction alone could reverse the most of differentially expressed proteins in the heart of the rats with ISO-iCM, including the commonly recognized biomarkers natriuretic peptides (NPPA) of cardiomyopathy and sarcomeric myosin light chain 4 (MYL4), relieving ISO-iCM in rats, but AM did not pronouncedly improve the pharmacological efficiency of DS. Significantly, we revealed that AS4 remarkably promoted the pharmacological potency of DS by complementarily reversing myosin motor MYH6/7, and further downregulating NPPA and MYL4. In contrast, APS reduced the efficiency of DS due to upregulating NPPA and MYL4. These findings not only provide novel insights to better understanding in the combination principle of traditional Chinese medicine but also highlight the power of mass spectrometric proteomics strategy combined with conventional pathological approaches for the traditional medicine research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9403516 | PMC |
http://dx.doi.org/10.3389/fphar.2022.939483 | DOI Listing |
PLoS One
July 2024
Global Discovery, Investigative & Translational Sciences-Animal Models and Imaging, Pfizer Inc, Cambridge, Massachusetts, United States of America.
Int Immunopharmacol
May 2024
School of Medicine, Changchun Sci-Tech University, Changchun 130600, China. Electronic address:
Myocardial injury (MI) signifies a pathological aspect of cardiovascular diseases (CVDs) such as coronary artery disease, diabetic cardiomyopathy, and myocarditis. Macrostemonoside T (MST) has been isolated from Allium macrostemon Bunge (AMB), a key traditional Chinese medicine (TCM) used for treating chest stuffiness and pains. Although MST has demonstrated considerable antioxidant activity in vitro, its protective effect against MI remains unexplored.
View Article and Find Full Text PDFFree Radic Res
May 2024
Faculdade de Medicina, Universidade Federal do Cariri, Barbalha, Ceará, Brazil.
Calorie restriction is a nutritional intervention that reproducibly protects against the maladaptive consequences of cardiovascular diseases. Pathological cardiac hypertrophy leads to cellular growth, dysfunction (with mitochondrial dysregulation), and oxidative stress. The mechanisms behind the cardiovascular protective effects of calorie restriction are still under investigation.
View Article and Find Full Text PDFBiomed Pharmacother
May 2024
Department of Veterinary Sciences, University of Pisa, via Delle Piagge 2-56124, Pisa, Italy; CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa 56126, Italy.
The isoproterenol (ISO)-induced myocardial fibrosis is considered a reliable and repeatable experimental model characterized by a relatively low mortality rate. Although is well-known that ISO stimulates the β1 adrenergic receptors at the myocardial level, a high degree of heterogeneity emerges around the doses and duration of the treatment generating unclear results. Therefore, we propose to gain insights into the progression of ISO-induced myocardial fibrosis, in order to critically analyze and optimize the experimental model.
View Article and Find Full Text PDFJ Mol Cell Cardiol
May 2024
Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, United States of America; Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota, Minneapolis, MN, United States of America; Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, United States of America. Electronic address:
Ongoing cardiomyocyte injury is a major mechanism in the progression of heart failure, particularly in dystrophic hearts. Due to the poor regenerative capacity of the adult heart, cardiomyocyte death results in the permanent loss of functional myocardium. Understanding the factors contributing to myocyte injury is essential for the development of effective heart failure therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!