Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9399847PMC
http://dx.doi.org/10.3389/frai.2022.988289DOI Listing

Publication Analysis

Top Keywords

editorial artificial
4
artificial intelligence
4
intelligence techniques
4
techniques personalized
4
personalized educational
4
educational software
4
editorial
1
intelligence
1
techniques
1
personalized
1

Similar Publications

AI comes to the Nobel Prize and drug discovery.

J Pharm Anal

November 2024

College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China.

View Article and Find Full Text PDF

The association between total social exposure and incident multimorbidity: A population-based cohort study.

SSM Popul Health

March 2025

Dalla Lana School of Public Health, University of Toronto, Health Sciences Building, 155 College Street, 6th Floor, Toronto, Ontario, M5T 3M7, Canada.

Background: Multimorbidity, the co-occurrence of two or more chronic conditions, is associated with the social determinants of health. Using comprehensive linked population-representative data, we sought to understand the combined effect of multiple social determinants on multimorbidity incidence in Ontario, Canada.

Methods: Ontario respondents aged 20-55 in 2001-2011 cycles of the Canadian Community Health Survey were linked to administrative health data ascertain multimorbidity status until 2022.

View Article and Find Full Text PDF

Artificial intelligence and machine learning capabilities in the detection of acute scaphoid fracture: a critical review.

J Hand Surg Eur Vol

January 2025

Clinical Scientific Computing, Guy's and St Thomas' NHS Foundation Trust, London, UK.

This paper discusses the current literature surrounding the potential use of artificial intelligence and machine learning models in the diagnosis of acute obvious and occult scaphoid fractures. Current studies have notable methodological flaws and are at high risk of bias, precluding meaningful comparisons with clinician performance (the current reference standard). Specific areas should be addressed in future studies to help advance the meaningful and clinical use of artificial intelligence for radiograph interpretation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!