Exploiting 4D-flow magnetic resonance imaging (MRI) data to quantify hemodynamics requires an adequate spatio-temporal vector field resolution at a low noise level. To address this challenge, we provide a learned solution to super-resolve 4D-flow MRI data at a post-processing level. We propose a deep convolutional neural network (CNN) that learns the inter-scale relationship of the velocity vector map and leverages an efficient residual learning scheme to make it computationally feasible. A novel, direction-sensitive, and robust loss function is crucial to learning vector-field data. We present a detailed comparative study between the proposed super-resolution and the conventional cubic B-spline based vector-field super-resolution. Our method improves the peak-velocity to noise ratio of the flow field by 10 and 30% for cardiovascular and cerebrovascular data, respectively, for 4 × super-resolution over the state-of-the-art cubic B-spline. Significantly, our method offers 10x faster inference over the cubic B-spline. The proposed approach for super-resolution of 4D-flow data would potentially improve the subsequent calculation of hemodynamic quantities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411720PMC
http://dx.doi.org/10.3389/frai.2022.928181DOI Listing

Publication Analysis

Top Keywords

mri data
12
cubic b-spline
12
super-resolution 4d-flow
8
4d-flow mri
8
data
6
super-resolution
5
srflow deep
4
deep learning
4
learning based
4
based super-resolution
4

Similar Publications

Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammation and neurodegeneration. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, has shown promise in reducing disease activity in MS patients. This prospective study aims to assess the effectiveness of ocrelizumab in reducing confirmed disability progression in patients with relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS) over a two-year period.

View Article and Find Full Text PDF

: Surgery for adolescent idiopathic deformities is often aimed at improving aesthetic appearance, striving for the best possible correction. However, severe and rigid scoliotic curves not only present aesthetic issues but can also compromise cardiopulmonary health and cause early neurological impairment due to spinal cord compression, posing significant risks of morbidity and mortality if untreated. Conservative treatments are ineffective for severe curves, defined by scoliotic angles over 70° and flexibility below 30% on lateral bending X-rays.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) is frequently associated with long-term post-stroke cognitive impairment (PSCI) and dementia. While the mechanisms behind PSCI are not fully understood, the brain and cognitive reserve concepts are topics of ongoing research exploring the ability of individuals to maintain intact cognitive performance despite ischemic injuries. Brain reserve refers to the brain's structural capacity to compensate for damage, with markers like hippocampal atrophy and white matter lesions indicating reduced reserve.

View Article and Find Full Text PDF

Background: Stroke volume index (SVI) is an important prognostic parameter in pulmonary arterial hypertension (PAH). The direct Fick (DF) method represents the gold standard for measuring it. Indirect Fick (IF) and thermodilution (TD) are simpler and widely used alternatives.

View Article and Find Full Text PDF

This study aimed to identify asymptomatic brain lesions in patients with β-thalassemia major (TM) and sickle cell anemia (SCA) and evaluate the correlation of these lesions with factors such as splenectomy, thrombocytosis, and blood transfusions. A total of 26 patients with thalassemia major and 23 patients with sickle cell anemia were included. Ischemic lesions were categorized as lacunar, small vessel, or multifocal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!