ANGPTL8 promotes adipogenic differentiation of mesenchymal stem cells: potential role in ectopic lipid deposition.

Front Endocrinol (Lausanne)

Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China.

Published: August 2022

AI Article Synopsis

  • Ectopic lipid deposition, which is when fat builds up in the wrong places in the body, is linked to serious health issues like diabetes and obesity, and a protein called ANGPTL8 might be involved in this process.
  • Researchers studied ANGPTL8 levels in people with obesity and in mice fed a high-fat diet to understand its role in fat accumulation.
  • Results showed that mice without ANGPTL8 gained less weight and had less fat in their organs compared to normal mice, but female mice had different results due to hormones affecting ANGPTL8 levels.

Article Abstract

Background: Ectopic lipid deposition plays a promoting role in many chronic metabolic diseases. Abnormal adipogenic differentiation of mesenchymal stem cells (MSCs) is an important cause of lipid deposition in organs. Studies have shown that serum angiopoietin-like protein 8 (ANGPTL8) levels are increased in patients with many chronic metabolic diseases (such as type 2 diabetes, obesity, and hepatic steatosis), while the role of ANGPTL8 in ectopic lipid accumulation has not been reported.

Methods: We used the Gene Expression Omnibus (GEO) database to analyze the expression of ANGPTL8 in subcutaneous adipose tissue of obese patients and qPCR to analyze the expression of ANGPTL8 in the liver of high-fat diet (HFD)-induced obese mice. To explore the potential roles of ANGPTL8 in the progression of ectopic lipid deposition, ANGPTL8 knockout (KO) mice were constructed, and obesity models were induced by diet and ovariectomy (OVX). We analyzed lipid deposition (TG) in the liver, kidney, and heart tissues of different groups of mice by Oil Red O, Sudan black B staining, and the single reagent GPO-PAP method. We isolated and characterized MSCs to analyze the regulatory effect of ANGPTL8 on Wnt/β-Catenin, a key pathway in adipogenic differentiation. Finally, we used the pathway activator LiCl and a GSK3β inhibitor (i.e., CHIR99021) to analyze the regulatory mechanism of this pathway by ANGPTL8.

Results: ANGPTL8 is highly expressed in the subcutaneous adipose tissue of obese patients and the liver of HFD-induced obese mice. Both normal chow diet (NCD)- and HFD-treated ANGPTL8 KO male mice gained significantly less weight than wild-type (WT) male mice and reduced ectopic lipid deposition in organs. However, the female mice of ANGPTL8 KO, especially the HFD group, did not show differences in body weight or ectopic lipid deposition because HFD could induce estrogen overexpression and then downregulate ANGPTL8 expression, thereby counteracting the reduction in HFD-induced ectopic lipid deposition by ANGPTL8 deletion, and this result was also further proven by the OVX model. Mechanistic studies demonstrated that ANGPTL8 could promote the differentiation of MSCs into adipocytes by inhibiting the Wnt/β-Catenin pathway and upregulating PPARγ and c/EBPα mRNA expression.

Conclusions: ANGPTL8 promotes the differentiation of MSCs into adipocytes, suggesting that ANGPTL8 may be a new target for the prevention and treatment of ectopic lipid deposition in males.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404696PMC
http://dx.doi.org/10.3389/fendo.2022.927763DOI Listing

Publication Analysis

Top Keywords

lipid deposition
36
ectopic lipid
32
angptl8
16
adipogenic differentiation
12
lipid
10
deposition
9
angptl8 promotes
8
differentiation mesenchymal
8
mesenchymal stem
8
stem cells
8

Similar Publications

Common salt (NaCl) causes developmental, behavioral, and physiological defects in .

Nutr Neurosci

January 2025

Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.

Purpose: The incidence of obesity has surged to pandemic levels in recent decades. Approximately 1.89 million obesity are linked to excessive salt consumption.

View Article and Find Full Text PDF

Benzopyrene Aggravates Nonalcoholic Liver Fatty Diseases in Female Mice Via the AHR/ERα Axis.

Curr Mol Med

January 2025

Inflammation and Immune-Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China.

Objective: Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver condition worldwide, and the statistics show that men have a higher incidence and prevalence than women, but its toxicological mechanism is not completely clear. This research is intended to explore the role of BaP in NAFLD and to study how the environmental pollutant BaP influences the AHR/ERα axis to mediate the progression of NAFLD.

Methods: In this study, we established NAFLD models in vivo and in vitro by treating HepG2 cells with a high-fat diet and Oleic acid (OA) in C57BL/6J mice.

View Article and Find Full Text PDF

Ginsenoside Rg1: A bioactive therapeutic agent for diverse liver diseases.

Pharmacol Res

January 2025

Shanghai Key Lab of Human Performance (Shanghai University of sport), Shanghai University of Sport, Shanghai 200438, China; The Key Lab of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai 200438, China. Electronic address:

Diverse liver diseases are characterised by late diagnosis and rapid progression and have become one of the major threats to human health. To delay the transition from benign tissue lesions to a substantial organ injury, scientists have gradually applied natural compounds derived from plants as a complementary therapy in the field of hepatology. Ginseng (Panax ginseng C.

View Article and Find Full Text PDF

Small molecule-driven LKB1 deacetylation is responsible for the inhibition of hepatic lipid response in NAFLD.

J Lipid Res

January 2025

Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China. Electronic address:

Nonalcoholic fatty liver disease (NAFLD) is a progressive condition characterized by ectopic fat accumulation in the liver, for which no FAD-approved drugs currently exist. Emerging evidence highlights the role of liver kinase B1 (LKB1), a key metabolic regulator, has been proposed in NAFLD, particularly in response to excessive nutrient levels. However, few agents have been identified that can prevent the progression of nonalcoholic steatohepatitis (NASH) by targeting LKB1 deacetylation.

View Article and Find Full Text PDF

Melatonin improves endometrial receptivity and embryo implantation via MT2/PI3K/LIF signaling pathway in sows.

J Anim Sci Biotechnol

January 2025

Key Laboratory of Northwest China's Pig Breading and Reproduction, Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, Shaanxi, China.

Background: Increased backfat thickness of sows in early gestation is negative to reproductive performance. Endometrial receptivity is an important determinant of reproductive success, but it is unclear whether the effect of sow backfat thickness on litter size is associated with endometrial receptivity and whether melatonin treatment may have benefits. The present study seeks to answer these questions through in vitro and in vivo investigations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!