Acute lung injury (ALI) is a serious disease with a high incidence rate, characterized by uncontrolled inflammation and apoptosis. At present, long-chain noncoding RNA (lncRNA) is a noncoding RNA with a length of more than 200 nucleotides. It plays an important role in ALI, cell cycle regulation, cell differentiation regulation, and many other life activities. Therefore, the current focus is to identify and evaluate the possible functions and potential molecular mechanisms of lncRNA small nuclear host gene 12 (SNHG12). Lipopolysaccharide (LPS)-induced mice model and in vitro cell model were established. Gene knockout is to use the principle of DNA homologous recombination to replace the target gene fragment with the designed homologous fragment, so as to achieve the purpose of gene knockout. The relationship between lncRNA SNHG12 expression and ALI was studied through knockdown and overexpression experiments. The qRT-PCR, ROS, immunohistochemistry, histopathology, TUNEL, and cell permeability tests were performed to further verify the possible targets and mechanisms of action. The expression of lncRNA SNHG12 in lung tissue was lower than that in normal tissue. The results showed that lncRNA SNHG12 could reduce lung cell injury and inflammatory cytokines induced by ALI. Bioinformatics analysis showed that lncRNA SNHG12 interacted with miR-140-3p. Subsequent experiments confirmed the link between lncRNA SNHG12, miR-140-3p, and fndc5. Furthermore, this study indicates that lncRNA SNHG12 has a key function in ALI. The results of this study demonstrated the role of lncRNA SNHG12 in the pathological process of ALI and provided a reference for developing novel anti-ALI treatments so that patients can get timely treatment, avoid causing multiple organ failure, and will not endanger their life safety.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392626PMC
http://dx.doi.org/10.1155/2022/1681864DOI Listing

Publication Analysis

Top Keywords

lncrna snhg12
32
lncrna
10
target gene
8
noncoding rna
8
snhg12
8
gene knockout
8
cell
6
ali
6
gene
5
snhg12 inhibition
4

Similar Publications

A growing body of evidence suggests the involvement of long noncoding ribose nucleic acids (lncRNAs) in acute kidney injury (AKI). This study focused on the mechanistic role of lncRNA small nucleolar RNA host gene 12 (SNHG12) in ischemia/reperfusion (I/R)-mediated AKI. A model of hypoxia/reoxygenation (H/R) was created using human kidney cells (HK-2).

View Article and Find Full Text PDF

[Revision of Functionally Relevant and Widely Expressed Long Non-Coding RNAs].

Mol Biol (Mosk)

December 2024

Laboratory of Functional Genomics, Research Centre for Medical Genetics, Moscow, 115522 Russia.

Long non-coding RNAs (lncRNAs) are involved in many cellular processes while displaying high tissue specificity. In contrast, protein-coding genes, including the category of housekeeping ones, exhibit broad expression patterns. The aim of this study was to highlight the functional importance of widely expressed lncRNAs.

View Article and Find Full Text PDF

Ovarian cancer (OC) develops asymptomatically and escapes diagnosis until advanced stages, the feature contributing to a higher mortality rate. New prospects of OC diagnosis and treatment have been opened in studies of the gene regulation mechanisms that involve long noncoding RNAs (lncRNAs) and identification of the lncRNA genes that are inhibited via methylation of the promoter region. A set of 122 samples of primary OC tumors was examined by methylation specific real-time PCR to assess the methylation level of the lncRNA genes PLUT, SNHG1, SNHG6, SNHG12, and TINCR.

View Article and Find Full Text PDF
Article Synopsis
  • The small nucleolar RNA host gene (SNHG) family may contribute to cancer development by creating long non-coding RNAs and affecting ribosome production and small nucleolar RNA formation.
  • A study analyzing 122 ovarian cancer samples found significant increases in the methylation levels of five SNHG family lncRNA genes, linking these changes to factors like tumor progression and metastasis.
  • Additionally, there was a notable co-methylation among four of these genes and predictions of their interactions with specific microRNAs, suggesting their collective role in ovarian cancer pathogenesis.
View Article and Find Full Text PDF

Whole transcriptome sequencing identifies key lncRNAs, circRNAs and miRNAs in sepsis-associated acute lung injury.

Exp Lung Res

November 2024

Department of Intensive Care Unit, Key Laboratory for Critical Care Medicine of the Ministry of Health, Emergency Medicine Research Institute, Tianjin First Center Hospital, Nankai University, Tianjin, China.

Article Synopsis
  • - In this study, researchers explored the genetic differences in mice with acute lung injury (ALI) induced by sepsis to understand its underlying mechanisms, using methods like transcriptome sequencing and various assays to analyze lung tissues.
  • - They identified a total of 4,182 differentially expressed genes, including mRNAs, lncRNAs, circRNAs, and miRNAs, and connected them through ceRNA networks and protein-protein interactions, pinpointing significant regulatory RNAs involved in this condition.
  • - Key findings revealed that certain RNAs, such as circRNA-Tcf20 and miRs (miR-212-3p and miR-223-3p), are linked to important signaling pathways like TNF and PI3K
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!