Mercury intoxication typically produces more severe outcomes in people with the ε gene, which codes for the ApoE4 variant of apolipoprotein E, compared to individuals with the ε and ε genes. Why the ε allele is a risk factor in mercury exposure remains unknown. One proposed possibility is that the ApoE protein could be involved in clearing of heavy metals, where the ApoE4 protein might perform this task worse than the ApoE2 and ApoE3 variants. Here, we used fluorescence and circular dichroism spectroscopies to characterize the interactions of the three different ApoE variants with Hg(I) and Hg(II) ions. Hg(I) ions displayed weak binding to all ApoE variants and induced virtually no structural changes. Thus, Hg(I) ions appear to have no biologically relevant interactions with the ApoE protein. Hg(II) ions displayed stronger and very similar binding affinities for all three ApoE isoforms, with values of 4.6 μM for ApoE2, 4.9 μM for ApoE3, and 4.3 μM for ApoE4. Binding of Hg(II) ions also induced changes in ApoE superhelicity, that is, altered coil-coil interactions, which might modify the protein function. As these structural changes were most pronounced in the ApoE4 protein, they could be related to the ε gene being a risk factor in mercury toxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404194PMC
http://dx.doi.org/10.1021/acsomega.2c02254DOI Listing

Publication Analysis

Top Keywords

hgii ions
12
apoe2 apoe3
8
apoe4 binding
8
binding affinities
8
risk factor
8
factor mercury
8
apoe protein
8
apoe4 protein
8
three apoe
8
apoe variants
8

Similar Publications

Mercury contamination of the environment is extremely hazardous to human health because of its significant toxicity, especially in water. Biomass-derived fluorophores such as carbon dots (CDs) have emerged as eco-friendly and cost-effective alternative sensors that provide comparable efficacy while mitigating the environmental and economic drawbacks of conventional methods. In this work, we report the fabrication of a selective fluorescence-enhancing sensor based on sulfur-doped carbon dots (SCDs) using waste bamboo-derived cellulose and sodium thiosulfate as the soft base dopant, which actively complexes with mercury ions for detection.

View Article and Find Full Text PDF

The effect of Bi-to-metal ion concentration ratio ( / ratio) on key evaluation indicators, including sensitivity, precision, and cathodic potential range, has been investigated for the determination of Cd and Pb at prepared bismuth film electrodes. Unlike the usual recommendation of at least a 10-fold excess of Hg(ii) for anodic stripping experiments at prepared mercury film electrodes, it is found that the / ratios in the 1-10 range are sufficient to obtain a high determination sensitivity, but that the signal decreases significantly when the ratio exceeds 40. Further analysis shows that the precision of the analytical results is good when the / ratio is in the range of 5-10.

View Article and Find Full Text PDF

Thiolated non-conjugated nano polymer network for advanced mercury removal from water.

J Hazard Mater

December 2024

Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China. Electronic address:

Developing advanced adsorbents for selectively deducing mercury (Hg) in water to one billionth level is of great significance for public health and ecological security, but achieving the balance among efficiency, cost and environmental friendliness of adsorbents still faces enormous challenges. Herein, we present a high thiol content non-conjugated nano polymer network (PVB-SH) through simple microemulsion polymerization for efficient Hg ion (Hg(II)) removal. The PVB-SH is prepared by conventional commercial reagents and does not consume toxic organic solutions.

View Article and Find Full Text PDF

Synthesis, fluorescence and theoretical insights into a novel FRET-based dansyl-rhodamine sensor for the in vitro detection of toxic bioaccumulated Hg(II) ions.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

LAQV-REQUIMTE, Department of Chemistry and Biochemistry (DQB), Faculty of Sciences, University of Porto (FCUP), 4169-007 Porto, Portugal. Electronic address:

This work describes the successful design and synthesis of a new fluorescence resonance energy transfer (FRET)-based sensor, denoted as RD1. This sensor incorporates a robust dual-fluorophore design, which combines a rhodamine and a dansyl derivative, functionalized with a thiosemicarbazide group that acts as Hg(II) specific recognition site. A synthetic pathway was developed that allowed the efficient synthesis of RD1 with a remarkable overall yield of 44% over four steps, through microwave-assisted protocols.

View Article and Find Full Text PDF

Chitosan-based porous composites embedded with molybdenum disulfide nanosheets for removal of mercury from wastewater.

Int J Biol Macromol

January 2025

Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China. Electronic address:

Mercury-containing wastewater presents a significant environmental threat due to its high toxicity. Therefore, the urgent removal of mercury-laden wastewater is essential to protect ecosystems and public health. In this study, molybdenum disulfide (MoS) nanosheets modified with a silane coupling agent (designated as MS) were crosslinked with natural polymer chitosan (CS) rich in -NH and - OH groups to develop a highly efficient and environmentally friendly MoS-functionalized three-dimensional reticulated porous materials (denoted as MS/CTS) composite adsorbent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!