We present a deep learning method for the segmentation of new lesions in longitudinal FLAIR MRI sequences acquired at two different time points. In our approach, the 3D volumes are processed slice-wise across the coronal, axial, and sagittal planes and the predictions from the three orientations are merged using an optimized voting strategy. Our method achieved best F1 score (0.541) among all participating methods in the MICCAI 2021 challenge (MSSEG-2). Moreover, we show that our method is on par with the challenge's expert neuroradiologists: on an unbiased ground truth, our method achieves results comparable to those of the four experts in terms of detection (F1 score) and segmentation accuracy (Dice score).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412001PMC
http://dx.doi.org/10.3389/fnins.2022.964250DOI Listing

Publication Analysis

Top Keywords

segmentation lesions
8
lesions longitudinal
8
triplanar u-net
4
u-net lesion-wise
4
lesion-wise voting
4
voting segmentation
4
longitudinal mri
4
mri studies
4
studies deep
4
deep learning
4

Similar Publications

Objective: Current guidelines recommend the use of glycoprotein IIb/IIIa (GpIIb/IIIa) inhibitors in patients with ST-segment elevation myocardial infarction (STEMI) only as a bail-out therapy. However, drug penetration to the jeopardised area may not be achieved due to impeded blood flow and increased microvascular resistance. Aim of our study is to investigate the impact of distal intracoronary GpIIb/IIIa inhibitor agent infusion in STEMI patients.

View Article and Find Full Text PDF

A comprehensive RCT in screening, surveillance, and diagnostic AI-assisted colonoscopies (ACCENDO-Colo study).

Dig Liver Dis

January 2025

Digestive Endoscopy Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, 00168, Roma, Italy.

Background And Aims: Adenoma detection rate (ADR) serves as a primary quality metric in colonoscopy. Various computer-aided detection (CADe) tools have emerged, yielding diverse impacts on ADR across different demographic cohorts. This study aims to evaluate a new CADe system in patients undergoing colonoscopy.

View Article and Find Full Text PDF

Background: First-generation bioresorbable scaffolds (BRS) increased risks of stent thrombosis and adverse events. The Bioheart scaffold is a new poly-L-lactic acid-based BRS.

Objectives: This study sought to evaluate the efficacy and safety of the BRS in patients with coronary artery disease.

View Article and Find Full Text PDF

Objectives: To develop a predictive score for the prediction of successful endovascular crossing in femoropopliteal artery chronic total occlusions (CTOs).

Methods: In this retrospective study, 84 patients were divided 70%:30% into a training and a testing cohort. Parameters such as cap morphology, side branches, bridging collaterals, flush occlusion, and length were derived from preprocedural CT angiography.

View Article and Find Full Text PDF

Can fast wall shear stress computation predict adverse cardiac events in patients with intermediate non-flow limiting stenoses?

Atherosclerosis

December 2024

Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK. Electronic address:

Background And Aims: Coronary angiography-derived wall shear stress (WSS) may enable identification of vulnerable plaques and patients. A new recently introduced software allows seamless three-dimensional quantitative coronary angiography (3D-QCA) reconstruction and WSS computation within a single user-friendly platform carrying promise for clinical applications. This study examines for the first time the efficacy of this software in detecting vulnerable lesions in patients with intermediate non-flow limiting stenoses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!