System dynamics modeling for traumatic brain injury: Mini-review of applications.

Front Bioeng Biotechnol

Systems Science Program, Portland State University, Portland, OR, United States.

Published: August 2022

Traumatic brain injury (TBI) is a highly complex phenomenon involving a cascade of disruptions across biomechanical, neurochemical, neurological, cognitive, emotional, and social systems. Researchers and clinicians urgently need a rigorous conceptualization of brain injury that encompasses nonlinear and mutually causal relations among the factors involved, as well as sources of individual variation in recovery trajectories. System dynamics, an approach from systems science, has been used for decades in fields such as management and ecology to model nonlinear feedback dynamics in complex systems. In this mini-review, we summarize some recent uses of this approach to better understand acute injury mechanisms, recovery dynamics, and care delivery for TBI. We conclude that diagram-based approaches like causal-loop diagramming have the potential to support the development of a shared paradigm of TBI that incorporates social support aspects of recovery. When developed using adequate data from large-scale studies, simulation modeling presents opportunities for improving individualized treatment and care delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411712PMC
http://dx.doi.org/10.3389/fbioe.2022.854358DOI Listing

Publication Analysis

Top Keywords

brain injury
12
system dynamics
8
traumatic brain
8
care delivery
8
dynamics modeling
4
modeling traumatic
4
injury
4
injury mini-review
4
mini-review applications
4
applications traumatic
4

Similar Publications

Background: Direct carotid-cavernous fistulas (CCFs) are relatively rare but dangerous complications of penetrating traumatic brain injury or maxillofacial trauma. A variety of clinical signs have been described, including ophthalmological and neurological ones. In some cases, severely altered cerebral blood flow can present as massive life-threatening bleeding through the nose, subarachnoid hemorrhage, and/or intraparenchymal hemorrhage.

View Article and Find Full Text PDF

Introduction: Self-harm represents a complex and multifaceted public health issue of global significance, exerting profound effects on individuals and communities alike. It involves intentional self-poisoning or self-injury with or without the motivation to die. Although self-harm is highly prevalent, limited research has focused on the patterns and trends of self-harm among hospital populations in low- and middle-income countries, particularly within Africa.

View Article and Find Full Text PDF

Aim: To explore the trajectories of consciousness recovery and prognosis-associated predictors in children with prolonged disorder of consciousness (pDoC).

Method: This single-centre, retrospective, observational cohort involved 134 (87 males, 47 females) children diagnosed with pDoC and hospitalized at the Department of Rehabilitation at the Children's Hospital of Chongqing Medical University in China. The median onset age was 30 (interquartile range [IQR] 18-54) months, with onset ages ranging from 3 to 164 months.

View Article and Find Full Text PDF

Concussions are a common form of mild traumatic brain injury characterized by a transient alteration of cerebral function leading to a range of physical, cognitive, and emotional symptoms. Postconcussive symptoms (PCSs) usually resolve in about a week but can persist in 10% to 15% of patients. If left untreated, PCS can profoundly affect a patient's life.

View Article and Find Full Text PDF

Liposomes-Loaded miR-9-5p Alleviated Hypoxia-Ischemia-Induced Mitochondrial Oxidative Stress by Targeting ZBTB20 to Inhibiting Nrf2/Keap1 Interaction in Neonatal Mice.

Antioxid Redox Signal

January 2025

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China.

Hypoxia ischemia (HI) is a leading cause of cerebral palsy and long-term neurological sequelae in infants. Given that mitochondrial dysfunction in neurons contributes to HI brain damage, this study aimed to investigate the regulatory role of miR-9-5p in mitochondrial function following HI injury. Overexpression of miR-9-5p in HI mice or HO-exposed PC12 cells suppressed neuronal injury, associated with increased mitochondrial copy number, normalizing mitochondrial membrane potential, improved nuclear factor-erythroid factor 2-related factor 2 (Nrf2) activation, and downregulation of Keap1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!