There is an urgent need to identify chemotherapeutic agents with improved efficacy and safety against triple-negative breast cancer (TNBC). Ginsenosides can reportedly induce tumor cell death, invasion, and metastasis; however, poor water solubility, low oral absorption rate, and rapid blood clearance limit their clinical application. Utilizing the amphiphilic property of ginsenosides as building blocks of biomaterials, we fabricated a carrier-free nanodrug composed of ginsenosides Rg3 and Rb1 using a nano-reprecipitation method without any additional carriers. After characterizing and demonstrating their uniform morphology and pH-sensitive drug release properties, we observed that Rg3-Rb1 nanoparticles (NPs) exhibited stronger antitumor and anti-invasive effects on TNBCs than those mediated by free ginsenosides. Consequently, Rg3-Rb1 NPs afforded superior inhibition of tumor growth and reduction of pulmonary metastasis than the Rg3 and Rb1 mixture, with no obvious systematic toxicity . Collectively, our results provide a proof-of-concept that self-assembled engineered ginsenoside nanodrugs may be efficient and safe for TNBC therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412961 | PMC |
http://dx.doi.org/10.3389/fbioe.2022.945472 | DOI Listing |
Front Immunol
January 2025
Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer, characterized by frequent recurrence, metastasis, and poor survival outcomes despite chemotherapy-based treatments. This study aims to investigate the mechanisms by which Traditional Chinese Medicine (TCM) modulates the tumor immune microenvironment in TNBC, utilizing CiteSpace and bioinformatics analysis.
Methods: We employed CiteSpace to analyze treatment hotspots and key TCM formulations, followed by bioinformatics analysis to identify the main active components, targets, associated pathways, and their clinical implications in TNBC treatment.
Front Immunol
January 2025
Key Lab of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Introduction: Breast cancer (BC) is the most prevalent malignant tumor in women, with triple-negative breast cancer (TNBC) showing the poorest prognosis among all subtypes. Glycosylation is increasingly recognized as a critical biomarker in the tumor microenvironment, particularly in BC. However, the glycosylation-related genes associated with TNBC have not yet been defined.
View Article and Find Full Text PDFJ Exp Pharmacol
January 2025
University Center of Excellence for Nutraceuticals, Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, West Java, Indonesia.
Purpose: A promising feature of marine sponges is the potential anticancer efficacy of their secondary metabolites. The objective of this study was to explore the anticancer activities of compounds from the fungal symbiont of on breast cancer cells.
Methods: In the present research, , an endophytic fungal strain derived from the marine sponge was successfully isolated and characterized.
Mater Today Bio
February 2025
Anhui University of Chinese Medicine, Hefei, 230012, China.
The therapeutic effect of immune checkpoint inhibitors (ICIs) in triple-negative breast cancer (TNBC) is unsatisfactory. The immune "cold" microenvironment caused by tumor-associated fibroblasts (TAFs) has an adverse effect on the antitumor response. Therefore, in this study, mixed cell membrane-coated porous magnetic nanoparticles (PMNPs) were constructed to deliver salvianolic acid B (SAB) to induce an antitumor immune response, facilitating the transition from a "cold" to a "hot" tumor and ultimately enhancing the therapeutic efficacy of immune checkpoint inhibitors.
View Article and Find Full Text PDFJ Multidiscip Healthc
January 2025
Department of Ultrasound, Lianyungang Traditional Chinese Medicine Hospital, Lianyungang, 222004, People's Republic of China.
Triple-negative breast cancer (TNBC) is a unique breast cancer subtype characterized by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression in tumor cells. TNBC represents about 15% to 20% of all breast cancers and is aggressive and highly malignant. Currently, TNBC diagnosis primarily depends on pathological examination, while treatment efficacy is assessed through imaging, biomarker detection, pathological evaluation, and clinical symptom improvement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!