A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Depth-extended acoustic-resolution photoacoustic microscopy based on a two-stage deep learning network. | LitMetric

Depth-extended acoustic-resolution photoacoustic microscopy based on a two-stage deep learning network.

Biomed Opt Express

Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Published: August 2022

Acoustic resolution photoacoustic microscopy (AR-PAM) is a major modality of photoacoustic imaging. It can non-invasively provide high-resolution morphological and functional information about biological tissues. However, the image quality of AR-PAM degrades rapidly when the targets move far away from the focus. Although some works have been conducted to extend the high-resolution imaging depth of AR-PAM, most of them have a small focal point requirement, which is generally not satisfied in a regular AR-PAM system. Therefore, we propose a two-stage deep learning (DL) reconstruction strategy for AR-PAM to recover high-resolution photoacoustic images at different out-of-focus depths adaptively. The residual U-Net with attention gate was developed to implement the image reconstruction. We carried out phantom and experiments to optimize the proposed DL network and verify the performance of the proposed reconstruction method. Experimental results demonstrated that our approach extends the depth-of-focus of AR-PAM from 1mm to 3mm under the 4 mJ/cm light energy used in the imaging system. In addition, the imaging resolution of the region 2 mm far away from the focus can be improved, similar to the in-focus area. The proposed method effectively improves the imaging ability of AR-PAM and thus could be used in various biomedical studies needing deeper depth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9408237PMC
http://dx.doi.org/10.1364/BOE.461183DOI Listing

Publication Analysis

Top Keywords

photoacoustic microscopy
8
two-stage deep
8
deep learning
8
ar-pam
7
imaging
5
depth-extended acoustic-resolution
4
photoacoustic
4
acoustic-resolution photoacoustic
4
microscopy based
4
based two-stage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!