is a genus of ubiquitous environmental pathogens found in freshwater systems, moist soil, and composted materials. More than four decades of research has provided important insights into pathogenesis. Although standard commercial microscopes have led to significant advances in understanding pathogenesis, great potential exists in the deployment of more advanced imaging techniques to provide additional insights. The lattice light sheet microscope (LLSM) is a recently developed microscope for 4D live cell imaging with high resolution and minimum photo-damage. We built a LLSM with an improved version for the optical layout with two path-stretching mirror sets and a novel reconfigurable galvanometer scanner () module to improve the reproducibility and reliability of the alignment and maintenance of the LLSM. We commissioned this LLSM to study infection with a tailored workflow designed over instrumentation, experiments, and data processing methods. Our results indicate that infection is correlated with a series of morphological signatures such as smoothness, migration pattern and polarity both statistically and dynamically. Our work demonstrates the benefits of using LLSM for studying long-term questions in bacterial infection. Our free-for-use modifications and workflow designs on the use of LLSM system contributes to the adoption and promotion of the state-of-the-art LLSM technology for both academic and commercial applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9408256 | PMC |
http://dx.doi.org/10.1364/BOE.459012 | DOI Listing |
Nanoscale Adv
December 2024
Institute of Science and Technology, TNU-University of Sciences Thai Nguyen Vietnam
This article studies the synthesis, as well as the structural, vibrational, and optical properties of Eu-doped ZnO quantum dots (QDs) and investigates the energy transfer mechanism from the ZnO host to Eu ions using Reisfeld's approximation. Eu-doped ZnO QDs at varying concentrations (0-7%) were successfully prepared using a wet chemical method. The successful doping of Eu ions into the ZnO host lattice, as well as the composition and valence states of the elements present in the sample, were confirmed through X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Beijing University of Technology, Materials Science and Technology, Pingleyuan 100#, Chaoyang District, 100124, Beijing, CHINA.
Manganese-based (Mn-based) layered oxides have emerged as competitive cathode materials for sodium-ion batteries (SIBs), primarily due to their high energy density, cost-effectiveness, and potential for mass production. However, these materials often suffer from irreversible oxygen redox reactions, significant phase transitions, and microcrack formation, which lead to considerable internal stress and degradation of electrochemical performance. This study introduces a high-entropy engineering strategy for P2-type Mn-based layered oxide cathodes (HE-NMCO), wherein a multi-ingredient cocktail effect strengthens the lattice framework by modulating the local environmental chemistry.
View Article and Find Full Text PDFACS Omega
December 2024
UCL Institute for Materials Discovery, University College London, Malet Place, London WC1E 7JE, United Kingdom.
Transparent conducting oxides (TCOs) are widely used in modern electronics because they have both high transmittance and good conductivity, which is beneficial for many applications such as light-emitting diodes. Tailoring electronic states and hence the conductive types by design is important for developing new materials with optimal properties for TCOs. SnO, with a wide band gap, low cost, no toxins, and high stability, is a promising host material for TCOs.
View Article and Find Full Text PDFInorg Chem
December 2024
Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China.
Defect engineering in SrTiO crystals plays a pivotal role in achieving efficient overall solar water splitting, as evidenced by the influence of Al ions. However, the uneven structural relaxation caused by Al ions has been overlooked, significantly affecting the defect state and catalytic activity. When an AlO crucible is used, optimizing this defect engineering presents a significant challenge.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Physics, Washington University in St. Louis, St. Louis, MO, 63130, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!