The transmetalation of the digold(I) complex [AuCl(dcpm)] () (dcpm = bis(dicyclohexylphosphino)methane) with oligophenylene diboronic acids gave the triangular macrocyclic complexes [Au(CH) (dcpm)] ( = 3, 4, 5) with yields of over 70%. On the other hand, when the other digold(I) complex [AuCl(dppm)] () (dppm = bis(diphenylphosphino)methane) was used, only a negligible amount of the triangular complex was obtained. The control experiments revealed that the dcpm ligand accelerated an intermolecular Au(I)-C σ-bond-exchange reaction and that this high reversibility is the origin of the selective formation of the triangular complexes. Structural analyses and theoretical calculations indicate that the dcpm ligand increases the electrophilicity of the Au atom in the complex, thus facilitating the exchange reaction, although the cyclohexyl group is an electron-donating group. Furthermore, the oxidative chlorination of the macrocyclic gold complexes afforded a series of []cycloparaphenylenes ( = 9, 12, 15) in 78-88% isolated yields. The reorganization of two different macrocyclic Au complexes gave a mixture of macrocyclic complexes incorporating different oligophenylene linkers, from which a mixture of []cycloparaphenylenes with various numbers of phenylene units was obtained in good yields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9400051PMC
http://dx.doi.org/10.1021/jacsau.2c00194DOI Listing

Publication Analysis

Top Keywords

macrocyclic complexes
12
digoldi complex
8
dcpm ligand
8
complexes
5
dynamic au-c
4
au-c σ-bonds
4
σ-bonds leading
4
leading efficient
4
efficient synthesis
4
synthesis []cycloparaphenylenes
4

Similar Publications

Supramolecularly Built Local Electric Field Microenvironment around Cobalt Phthalocyanine in Covalent Organic Frameworks for Enhanced Photocatalysis.

J Am Chem Soc

January 2025

Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.

The local electric field (LEF) plays an important role in the catalytic process; however, the precise construction and manipulation of the electric field microenvironment around the active site remains a significant challenge. Here, we have developed a supramolecular strategy for the implementation of a LEF by introducing the host macrocycle 18-crown-6 (18C6) into a cobalt phthalocyanine (CoPc)-containing covalent organic framework (COF). Utilizing the supramolecular interaction between 18C6 and potassium ion (K), a locally enhanced K concentration around CoPc can be built to generate a LEF microenvironment around the catalytically active Co site.

View Article and Find Full Text PDF

We report herein the synthesis and full spectroscopic characterization of two AB-corrole phosphonic acids. Thanks to the presence of a phosphonic acid functional group at the 10--position, the corroles were covalently linked to the hexanuclear Zr clusters of a PCN-222 metal-organic framework (MOF). After the insertion of cobalt into the corrole macrocycle, the metal complexes are able to bind small volatile molecules such as carbon monoxide (CO).

View Article and Find Full Text PDF

Template-directed synthesis has become a powerful methodology to access complex molecules. Noncovalent templating has been widely used in the last few decades, but less attention has been paid to covalent template-directed synthesis, despite the fact that this methodology was used for the first reported synthesis of a catenane. This review highlights the evolution of covalent templating over the last 60 years, thereby providing a toolbox for the design of efficient covalent templating processes.

View Article and Find Full Text PDF

Late-Stage Stitching Enabled by Palladium-Catalyzed Tryptophan C4 Amination: Peptide Ligation and Cyclodimerization.

Org Lett

January 2025

State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.

Here, we report on methods for late-stage peptide diversification through palladium-catalyzed site-selective C(sp)-H amination of tryptophan residues at the C4 position, utilizing tryptophan-amine cross-links. Our strategy enables practical access to C-N bonds, facilitating the construction of cyclopeptides via late-stage cyclodimerization of structurally complex peptides, which poses significant challenges for organic synthesis. The synthetic utility of this protocol is demonstrated through the synthesis of 30- to 38-membered macrocyclic peptides.

View Article and Find Full Text PDF

2,8-Dithia-5-aza-2,6-pyridinophane () has been used as a receptor unit in the construction of the conjugated redox chemosensor 5-ferrocenylmethyl-2,8-dithia-5-aza-2,6-pyridinophane (). In order to further explore the coordination chemistry of , and comparatively, that of its structural analogue 2,11-dithia-5,8-diaza-2,6-pyridinophane (), featuring two secondary nitrogen atoms in the macrocyclic unit, the crystal structures of the new synthesised complexes [Pb()(ClO)]·½CHCN, [Cu()](ClO)·CHCN and [Cd()(NO)]NO were determined by X-ray diffraction analysis. The electrochemical response of towards the metal ions Cu, Zn, Cd, Hg, and Pb was investigated by cyclic voltammetry (CV) in CHCl/CHCN 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!