Introduction: The applications of fumigation and the challenges that high-containment facilities face in achieving effective large volume decontamination are well understood. The Biosecurity Research Institute at Kansas State University sought to evaluate a novel system within their biosafety level 3 (BSL-3) and animal biosafety level 3 agriculture (ABSL-3Ag) facility.
Methods: The system chosen for this study is the CURIS Hybrid Hydrogen Peroxide (HHP) system, comprising a mobile 36-pound (16 kg) device delivering a proprietary 7% hydrogen peroxide (HO) solution. To examine the system's efficacy in multiple laboratory settings, two BSL-3 laboratories (2,281 [65 m] and 4,668 ft [132 m]) with dropped ceiling interstitial spaces and an ABSL-3Ag necropsy suite (44,212 ft [1,252 m]) with 21-foot (6.4 m) ceilings were selected. Biological indicators (BIs) of (1.7 × 10 organisms) on steel spore carriers and HO chemical indicators (CIs) were used to provide validation.
Results: After cycle optimization, the smaller laboratory had a total of 60 BIs over two treatments that demonstrated a greater than 6-log reduction of bacterial spores. The larger laboratory (192 BIs) and the necropsy suite (206 BIs) had no BIs positive for spore growth when incubated at 60°C for 24 h per manufacturer's specifications.
Conclusion: Overall successful results through multiple components of this study demonstrate that the HHP device, paired with the pulsed 7% HO solution, achieved efficacy regardless of variables in laboratory size and layout. Perceived challenges such as 21-ft (6.4 m) ceiling heights, active equipment, and difficult to access ceiling interstitial spaces proved unfounded. Given the successful sterilization of all challenged BIs, the HHP system presents a useful alternative for high level decontamination within BSL-3 and ABSL-3Ag facilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9402250 | PMC |
http://dx.doi.org/10.1089/apb.2021.0012 | DOI Listing |
Nat Commun
December 2024
Laboratory of Aging Research and Cancer Drug Target, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
The immune escape capacities of XBB variants necessitate the authorization of vaccines with these antigens. In this study, we produce three recombinant trimeric proteins from the RBD sequences of Delta, BA.5, and XBB.
View Article and Find Full Text PDFEcol Lett
January 2025
Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany.
Trait-based approaches have been increasingly used to relate plants to soil microbial communities. Using the recently described root economics space as an approach to explain the structure of soil-borne fungal communities, our study in a grassland diversity experiment reveals distinct root trait strategies at the plant community level. In addition to significant effects of plant species richness, we show that the collaboration and conservation gradient are strong drivers of the composition of the different guilds of soil fungi.
View Article and Find Full Text PDFPPAR Res
December 2024
Yunnan Provincial Key Laboratory of Public Health and Biosafety & School of Public Health, Kunming Medical University, Kunming, Yunnan, China.
Hyperlipidemia is a critical risk factor for obesity, diabetes, cardiovascular diseases, and other chronic diseases. Our study was to determine the effects and mechanism of mangiferin (MF) and epigallocatechin gallate (EGCG) compounds on improving hyperlipidemia in HepG2 cells. HepG2 cells were treated with 0.
View Article and Find Full Text PDFAppl Biosaf
December 2024
National Microbiology, Public Health Agency of Canada, Winnipeg, Canada.
Introduction: Positive pressure breathing-air-fed protective suits are used in biosafety level 4 (BSL-4) containment laboratories as personal protective equipment to protect workers from high-consequence pathogens. However, even with the use of primary containment devices, the exterior surfaces of these suits could potentially become contaminated with those pathogens and result in their inadvertent removal from containment. To address the risk of such pathogens escaping from containment via contaminated protective suits, these suits are decontaminated in a disinfectant chemical shower situated in an anteroom prior to exiting the BSL-4 laboratory.
View Article and Find Full Text PDFAppl Biosaf
December 2024
Department of Microbiology and Immunology; University of Louisville School of Medicine, Louisville, Kentucky, USA.
Introduction: is the gram-negative, facultative intracellular bacterium that causes the disease known as plague. Due to the risk for aerosol transmission, a low infectious dose, and the acute and lethal nature of pneumonic plague, research activities with require Biosafety Level 3 (BSL-3) facilities to provide the appropriate safeguards to minimize accidental exposures and environmental release. However, many experimental assays cannot be performed in BSL-3 due to equipment availability, and thus require removal of samples from the BSL-3 laboratory to be completed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!