A fundamental understanding of behavior is essential to improving the welfare of billions of farm animals around the world. Despite living in an environment managed by humans, farm animals are still capable of making important behavioral decisions that influence welfare. In this review, we focus on social interactions as perhaps the most dynamic and challenging aspects of the lives of farm animals. Social stress is a leading welfare concern in livestock, and substantial variation in social behavior is seen at the individual and group level. Here, we consider how a fundamental understanding of social behavior can be used to: (i) understand agonistic and affiliative interactions in farm animals; (ii) identify how artificial environments influence social behavior and impact welfare; and (iii) provide insights into the mechanisms and development of social behavior. We conclude by highlighting opportunities to build on previous work and suggest potential fundamental hypotheses of applied relevance. Key areas for further research could include identifying the welfare benefits of socio-positive interactions, the potential impacts of disrupting important social bonds, and the role of skill in allowing farm animals to navigate competitive and positive social interactions. Such studies should provide insights to improve the welfare of farm animals, while also being applicable to other contexts, such as zoos and laboratories.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9411962 | PMC |
http://dx.doi.org/10.3389/fvets.2022.932217 | DOI Listing |
Trop Anim Health Prod
January 2025
Animal Science Department, Federal University of Paraná, Palotina, PR, 85950-000, Brazil.
This study aimed to evaluate the effect of autolyzed yeast (obtained from culture of Saccharomyces cerevisiae in sugarcane derivatives) supplementation on diet digestibility, feeding behavior, levels of blood metabolites associated with protein and energy metabolism, and performance of Dorper × Santa Ines lambs finished in feedlot. Twenty-four non-castrated male lambs with an average age of 4 months and a body weight (BW) of 19.49 ± 3.
View Article and Find Full Text PDFVet Med Sci
January 2025
College of Veterinary Medicine and Animal Science, Samara University, Samara, Ethiopia.
Background: Lack of knowledge regarding zoonotic transmission, prevention and control measures is a potential high risk for the occurrence of zoonotic diseases.
Objective: The study aimed to assess knowledge, attitude and practices of dairy farm participants concerning zoonoses.
Animals: A cross-sectional study was conducted from March to August 2022 in and around Sodo town, using a questionnaire among dairy farm participants (n = 123).
Vet Med Sci
January 2025
Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Central, Sri Lanka.
Family poultry farming plays a crucial role in ensuring protein availability and household income, particularly in low-income families. This study investigates the knowledge, attitudes and practices of family poultry farmers regarding poultry diseases, biosecurity and vaccinations. The research involved surveying 150 farmers in a selected area in Sri Lanka's western province, revealing significant knowledge gaps, particularly in understanding poultry diseases, their causes, transmission pathways and potential impacts on humans.
View Article and Find Full Text PDFCureus
December 2024
Department of Biology, College of Science, Polytechnic University of the Philippines, Manila, PHL.
Background: This study investigates the prevalence and intensity of parasitic infections in animal fecal samples collected from Sitio Ibayo, San Mateo, Rizal, Philippines, a suburban community considered a potential sentinel site for zoonotic disease surveillance.
Methods: Using cross-sectional sampling, 132 animal fecal samples were collected in the area exhaustively. Samples were processed through direct smear with saline solution and Lugol's iodine and flotation technique using mini- and fill-FLOTAC.
Fluids Barriers CNS
January 2025
Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia.
Background: Traumatic spinal cord injury (SCI) causes spinal cord swelling and occlusion of the subarachnoid space (SAS). SAS occlusion can change pulsatile cerebrospinal fluid (CSF) dynamics, which could have acute clinical management implications. This study aimed to characterise SAS occlusion and investigate CSF dynamics over 14 days post-SCI in the pig.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!