Previous studies have demonstrated that acute colonic inflammation leads to an increase in dorsal root ganglia (DRG) neuronal excitability. However, the signaling elements implicated in this hyperexcitability have yet to be fully unraveled. Extracellular adenosine 5'-triphosphate (ATP) is a well-recognized sensory signaling molecule that enhances the nociceptive response after inflammation through activation of P2X3 receptors, which are expressed mainly by peripheral sensory neurons. The aim of this study is to continue investigating how P2X3 affects neuronal hypersensitivity in an acute colitis animal model. To achieve this, DNBS (Dinitrobenzene sulfonic acid; 200 mg/kg) was intrarectally administered to C57BL/6 mice, and inflammation severity was assessed according to the following parameters: weight loss, macroscopic and microscopic scores. Perforated patch clamp technique was used to evaluate neuronal excitability measuring changes in rheobase and action potential firing in T8-L1 DRG neurons. A-317491, a well-established potent and selective P2X3 receptor antagonist, served to dissect their contribution to recorded responses. Protein expression of P2X3 receptors in DRG was evaluated by western blotting and immunofluorescence. Four days post-DNBS administration, colons were processed for histological analyses of ulceration, crypt morphology, goblet cell density, and immune cell infiltration. DRG neurons from DNBS-treated mice were significantly more excitable compared with controls; these changes correlated with increased P2X3 receptor expression. Furthermore, TNF-α mRNA expression was also significantly higher in inflamed colons compared to controls. Incubation of control DRG neurons with TNF-α resulted in similar cell hyperexcitability as measured in DNBS-derived neurons. The selective P2X3 receptor antagonist, A-317491, blocked the TNF-α-induced effect. These results support the hypothesis that TNF-α enhances colon-innervating DRG neuron excitability modulation of P2X3 receptor activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416886 | PMC |
http://dx.doi.org/10.3389/fimmu.2022.872760 | DOI Listing |
J Biol Chem
December 2024
Department of Biological Sciences, Purdue University, West Lafayette, IN-47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN-47907, USA. Electronic address:
ATP-activated P2X3 receptors play a pivotal role in chronic cough, affecting more than 10% of the population. Despite the challenges posed by the highly conserved structure of P2X receptors, efforts to develop selective drugs targeting P2X3 have led to the development of camlipixant, a potent, selective P2X3 antagonist. However, the mechanisms of receptor desensitization, ion permeation, and structural basis of camlipixant binding to P2X3 remain unclear.
View Article and Find Full Text PDFJ Formos Med Assoc
December 2024
Department of Life Science, College of Science, National Taiwan Normal University, 162, Section 1, Heping E. Rd., Taipei, 106, Taiwan. Electronic address:
Background/purpose: The mechanism for long-term hypoxia/ischemia induced bladder underactivity is uncertain. It requires an effectively therapeutic treatment. Therefore, we determined the pathophysiologic mechanisms of long-term bilateral partial iliac arterial occlusion (BPAO)-induced bladder underactivity and explored the therapeutic potential of adipose-derived stem cells (ADSCs) and ADSC-derived microvesicles (MVs) on BPAO-induced bladder dysfunction.
View Article and Find Full Text PDFPurinergic Signal
November 2024
Department of Physiology, Michigan State University, 567 Wilson Road, East Lansing, MI, 48824, USA.
Purines are important mediators of intercellular communication in the enteric nervous system (ENS) that participate in physiological gut functions and disease. Purinergic transmission is prominent in mechanisms of crosstalk between enteric neurons and glia where enteric glia exhibit high responsiveness to adenosine diphosphate (ADP) through P2Y receptors and neurons to adenosine triphosphate (ATP) through P2X receptors. Despite functional data suggesting that enteric glia are the primary site of P2Y expression in the ENS, gene sequencing suggests that P2Y expression is more enriched in neurons than glia.
View Article and Find Full Text PDFJ Allergy Clin Immunol Pract
November 2024
Centre for Human and Applied Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.
Chronic cough remains a significant clinical challenge, affecting approximately 10% of the population and leading to significant impairment in psychological, social, and physical quality of life. In recent years, efforts have intensified to elucidate the mechanisms underlying chronic cough and to focus on investigating and treating refractory chronic cough (RCC). A "treatable trait" approach, which focuses on identifying and addressing the specific associated causes of chronic cough, has gained traction.
View Article and Find Full Text PDFFront Cell Neurosci
October 2024
Division of Oral Biology, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!