Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the field of ophthalmology, retinal diseases are often accompanied by complications, and effective segmentation of retinal blood vessels is an important condition for judging retinal diseases. Therefore, this paper proposes a segmentation model for retinal blood vessel segmentation. Generative adversarial networks (GANs) have been used for image semantic segmentation and show good performance. So, this paper proposes an improved GAN. Based on R2U-Net, the generator adds an attention mechanism, channel and spatial attention, which can reduce the loss of information and extract more effective features. We use dense connection modules in the discriminator. The dense connection module has the characteristics of alleviating gradient disappearance and realizing feature reuse. After a certain amount of iterative training, the generated prediction map and label map can be distinguished. Based on the loss function in the traditional GAN, we introduce the mean squared error. By using this loss, we ensure that the synthetic images contain more realistic blood vessel structures. The values of area under the curve (AUC) in the retinal blood vessel pixel segmentation of the three public data sets DRIVE, CHASE-DB1 and STARE of the proposed method are 0.9869, 0.9894 and 0.9885, respectively. The indicators of this experiment have improved compared to previous methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2022464 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!