Comparative transcriptomic analysis reveal genes involved in the pathogenicity increase of epidemic strains.

Virulence

State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, China.

Published: December 2022

epidemic strains were responsible for two outbreaks in China and possessed increased pathogenicity which was featured prominently by inducing an excessive inflammatory response at the early phase of infection. To discover the critical genes responsible for the pathogenicity increase of epidemic strains, the genome-wide transcriptional profiles of epidemic strain SC84 were investigated at the early phase of interaction with BV2 cells. The overall low expression levels of 89K pathogenicity island (PAI) and 129 known virulence genes in the SC84 interaction groups indicated that its pathogenicity increase should be attributed to novel mechanisms. Using highly pathogenic strain P1/7 and intermediately pathogenic strain 89-1591 as controls, 11 pathogenicity increase crucial genes (PICGs) and 38 pathogenicity increase-related genes (PIRGs) were identified in the SC84 incubation groups. The PICGs encoded proteins related to the methionine biosynthesis/uptake pathway and played critical roles in the pathogenicity increase of epidemic strains. A high proportion of PIRGs encoded surface proteins related to host cell adherence and immune escape, which may be conducive to the pathogenicity increase of epidemic strains by rapidly initiating infection. The fact that none of PICGs and PIRGs belonged to epidemic strain-specific gene indicated that the pathogenicity increase of epidemic strain may be determined by the expression level of genes, rather than the presence of them. Our results deepened the understanding on the mechanism of the pathogenicity increase of epidemic strains and provided novel approaches to control the life-threatening infections of epidemic strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9423846PMC
http://dx.doi.org/10.1080/21505594.2022.2116160DOI Listing

Publication Analysis

Top Keywords

pathogenicity increase
32
epidemic strains
28
increase epidemic
24
pathogenicity
11
epidemic
10
increase
8
early phase
8
epidemic strain
8
indicated pathogenicity
8
pathogenic strain
8

Similar Publications

Diplodia sapinea (Fr.) Fuckel is a widespread fungal pathogen affecting conifers worldwide. Infections can lead to severe symptoms, such as shoot blight, canker, tree death, or blue stain in harvested wood, especially in Pinus species.

View Article and Find Full Text PDF

The detached leaf assay is a valuable method for studying plant-pathogen interactions, enabling the assessment of pathogenicity, plant resistance, and treatment effects. In this protocol, we outline how to set up a Phytophthora detached leaf assay and use non-expert machine learning tools to increase the reliability and throughput of the image analysis. Utilizing ilastik for pixel classification and Python scripts for segmentation, manual correction, and temporal linking, the pipeline provides objective and quantitative data over time.

View Article and Find Full Text PDF

Identifying the Pathogenicity of a Novel NPRL3 Missense Mutation Using Personalized Cortical Organoid Model of Focal Cortical Dysplasia.

J Mol Neurosci

December 2024

Department of Neurosurgery, National Children's Medical Center (Shanghai), Children's Hospital of Fudan University, No.399 Wan Yuan Avenue, Minhang District, Shanghai, 201102, China.

Focal cortical dysplasia (FCD) II is a cortical malformation characterized by cortical architectural abnormalities, dysmorphic neurons, with or without balloon cells. Here, we systematically explored the pathophysiological role of the GATOR1 subunit NPRL3 variants including a novel mutation from iPSCs derived from one FCD II patient. Three FCD II children aged 0.

View Article and Find Full Text PDF

Effective control of animal infectious diseases is crucial for maintaining robust livestock production systems worldwide. Porcine meat constitutes approximately 35-40% of global meat production with the largest producers being China and the European Union (EU). Emerging viral pathogens in swine, like porcine bocavirus (PBoV), have not garnered significant attention, leaving their pathogenic characteristics largely unexplored.

View Article and Find Full Text PDF

Antibacterial Effect of Canine Leucocyte Platelet-Rich Plasma (L-PRP) and Canine Platelet-Poor Plasma (PPP) Against Methicillin-Sensitive and Methicillin-Resistant .

Vet Sci

December 2024

Veterinary Transfusion Research Laboratory (REVLab), Department of Veterinary Medicine and Animal Sciences, University of Milan, Via dell'Università 6, 26900 Lodi, Italy.

(SP) is a commensal and opportunistic pathogen of skin and mucosal surfaces, isolated from healthy dogs and from canine pyoderma cases. It has recently gained attention due to its increasing antibiotic resistance. Platelet-rich plasma (PRP) is a biological product, obtained through a blood centrifugation process, which has antibacterial properties evidenced by in vitro and in vivo studies conducted in both the human and veterinary field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!