AI Article Synopsis

  • Cells in different environments can behave unexpectedly, as the study finds that they migrate faster in high viscosity conditions, which usually would slow them down.
  • The research highlights that both actin dynamics and ion channel activity play key roles in this increased cell speed.
  • It further indicates that the interaction between cytoplasmic actin and water dynamics, influenced by ion channels and calcium activity, is crucial for this phenomenon.

Article Abstract

Cells migrating in vivo encounter microenvironments with varying physical properties. One such physical variable is the fluid viscosity surrounding the cell. Increased viscosity is expected to increase the hydraulic resistance experienced by the cell and decrease cell speed. The authors demonstrate that contrary to this expected result, cells migrate faster in high viscosity media on 2-dimensional substrates. Both actin dynamics and water dynamics driven by ion channel activity are examined. Results show that cells increase in area in high viscosity and actomyosin dynamics remain similar. Inhibiting ion channel fluxes in high viscosity media results in a large reduction in cell speed, suggesting that water flux contributes to the observed speed increase. Moreover, inhibiting actin-dependent vesicular trafficking that transports ion channels to the cell boundary changes ion channel spatial positioning and reduces cell speed in high viscosity media. Cells also display altered Ca activity in high viscosity media, and when cytoplasmic Ca is sequestered, cell speed reduction and altered ion channel positioning are observed. Taken together, it is found that the cytoplasmic actin-phase and water-phase are coupled to drive cell migration in high viscosity media, in agreement with physical modeling that also predicts the observed cell speedup in high viscosity environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9561764PMC
http://dx.doi.org/10.1002/advs.202200927DOI Listing

Publication Analysis

Top Keywords

high viscosity
28
viscosity media
20
cell speed
16
ion channel
16
cell
10
viscosity
9
hydraulic resistance
8
cell migration
8
high
7
speed
5

Similar Publications

Unlabelled: The effects of high hydrostatic pressure (HHP) (400-650 MPa) and holding temperature (25-50 °C) in thermally assisted HHP processing on multi-scale structure of starch (granule, crystalline and molecular), techno-functional properties, and digestibility of sorghum starch (SS) were evaluated. Response surface methodology has verified that the process impact on the modification of SS was dependent primarily on the pressure level. As HHP increased, processed SS progressively lost their granular structure and Maltese cross, indicating gradual structural disorder within the granules.

View Article and Find Full Text PDF

The distribution of high-viscosity microfilms in designated regions is crucial for the performance and durability of MEMS devices. This paper presents a novel method for controllable film formation in the milli/micron region by blade coating. A microfilm can be formed without viscosity limitation, and the formation process can be monitored only via a one-dimensional force sensor.

View Article and Find Full Text PDF

brown seaweed () is reported to exhibit several biological activities that promote human health, but it does not have the ability to withstand harsh environmental conditions, such as high temperatures and oxygen exposure. Encapsulation of extraction through different techniques is known to, optimize physicochemical properties, biological activities, maintain stability, and is an effective way to improve the shelf life of different foods. In the present study, the encapsulation of SIE was carried out by the freeze-drying method using maltodextrin, whey protein isolate (WPI), and chitosan.

View Article and Find Full Text PDF

Methodological study on coal-based microbial modification of mineral black clay to overcome plant growth challenges on open-pit mine dumps in cold regions.

MethodsX

June 2025

CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, PR China.

A critical challenge in ecological restoration of open-pit mine dumps in cold regions with limited topsoil resources is how to rapidly mitigate the plant growth-inhibitory effects of mineral black clay, thereby converting it into arable soil. Leveraging the high degradation capacity of coal seam-associated microorganisms on fossil carbon materials, combined with soil conditioning techniques, this study developed a microbial-based approach for modifying black clay. Seed germination experiments informed both laboratory and field trial designs.

View Article and Find Full Text PDF

Mechanism of dsDNA binding, enzyme inhibition, antioxidant activities, and molecular docking studies of taxifolin, daidzein, and S-equol.

Int J Biol Macromol

January 2025

Afsin Vocational School, Department of Chemistry and Chemical Processing Technologies, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey. Electronic address:

This study investigated the binding mechanism of taxifolin (TA), daidzein (DA), and S-equol (SQ) flavonoids with fish sperm double helix DNA (dsDNA) under the simulated physiological pH condition using UV-Vis and photoluminescence spectroscopy, as well as viscometric methods. Binding constants (K) for the flavonoids to dsDNA were determined as 1.8 × 10 M for SQ, 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!