Centranthera grandiflore alleviates alcohol-induced oxidative stress and cell apoptosis.

Chin J Nat Med

The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, Jiangsu Province, State Key Laboratory of Natural Medicines, Ministry of Education, Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China. Electronic address:

Published: August 2022

Alcohol liver disease (ALD) has become a global threat to human health. It is associated with a wide range of liver diseases including alcohol fatty liver, steatosis, fibrosis and cirrhosis, and finally leads to liver cancer and even death. Centranthera grandiflora is a traditional Chinese medicinal herb commonly used to treat ALD, but no research about its mechanism is available. This study evaluated the hepatoprotective effect and mechanism of C. grandiflora against alcohol-induced liver injury in mice. We found that the ethanol extracts of C. grandiflora (CgW) alleviated the alcohol-induced liver injury, enhanced the levels of antioxidant enzymes, and reduced the amount of lipid peroxides. CgW also affected cell apoptosis by inhibiting the activity of Bax, cleaved-caspase 3 and cleaved-caspase 9, and increasing the activity of Bcl-2. In conclusion, the results showed that CgW can effectively improve ALD through alleviating oxidative stress and inhibiting cell apoptosis for the first time. This study suggested that C. grandiflora is a promising herbal medicine for ALD treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S1875-5364(22)60181-XDOI Listing

Publication Analysis

Top Keywords

cell apoptosis
12
oxidative stress
8
alcohol-induced liver
8
liver injury
8
liver
6
centranthera grandiflore
4
grandiflore alleviates
4
alleviates alcohol-induced
4
alcohol-induced oxidative
4
stress cell
4

Similar Publications

Mechanisms Underlying the Size-Dependent Neurotoxicity of Polystyrene Nanoplastics in Zebrafish.

Environ Sci Technol

January 2025

State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu Province 210023, China.

Nanoplastics (NPs) are ubiquitous in the environment, posing significant threats to biological systems, including nervous systems, across various trophic levels. Nevertheless, the molecular mechanisms behind the size-dependent neurotoxicity of NPs remain unclear. Here, we investigated the neurotoxicity of 20 and 100 nm polystyrene NPs (PS-NPs) to zebrafish.

View Article and Find Full Text PDF

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

Objectives: Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI).

Methods: The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT).

View Article and Find Full Text PDF

Background: Leukemia may form at any age, from newborns to the elderly, and accounts for considerable mortality worldwide.

Objectives: Nerolidol (NRD) is isolated from the aromatic florae oils and was found to have anticancer activities. However, the role of NRD in antiproliferative and apoptosis actions in acute lymphoblastic leukemia (ALL) is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!