Testing the protective effects of cyclodextrins vs. alternariol-induced acute toxicity in HeLa cells and in zebrafish embryos.

Environ Toxicol Pharmacol

Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, Pécs H-7624, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, Pécs H-7624, Hungary. Electronic address:

Published: October 2022

Alternariol (AOH) is a mycotoxin produced by Alternaria fungi, it appears as a contaminant in tomatoes, grains, and grapes. The chronic exposure to AOH may cause carcinogenic and xenoestrogenic effects. Cyclodextrins (CDs) are cyclic oligosaccharides, they form host-guest complexes with apolar molecules. In this study, the interactions of AOH with CD monomers and polymers were examined employing fluorescence spectroscopy. Thereafter, the protective effects of certain CDs vs. AOH-induced toxicity were investigated on HeLa cells and on zebrafish embryos. Our major observations are the following: (1) Sugammadex forms highly stable complex with AOH (K = 4.8 ×10 L/mol). (2) Sugammadex abolished the AOH-induced toxicity in HeLa cells, while native β-CD did not show relevant protective effect. (3) Each CD tested decreased the AOH-induced mortality and sublethal adverse effects in zebrafish embryos: Interestingly, native β-CD showed the strongest protective impact in this model. (4) CD technology may be suitable to relieve AOH-induced toxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2022.103965DOI Listing

Publication Analysis

Top Keywords

hela cells
12
zebrafish embryos
12
aoh-induced toxicity
12
protective effects
8
effects cyclodextrins
8
toxicity hela
8
cells zebrafish
8
native β-cd
8
testing protective
4
effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!