Metagenomics insight into bioaugmentation mechanism of Propionibacterium acidipropionici during anaerobic acidification of kitchen waste.

Bioresour Technol

Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China.

Published: October 2022

In the present study, a biochemical strategy for improving propionic acid production from kitchen waste acidification by bioaugmentation with Propionibacterium acidipropionici (P. acidipropionici) was investigated. When the inoculum of P. acidipropionici was 30% (w/w) of the seeding sludge, the propionic acid production increased by 79.57%. Further, bioaugmentation improved the relative abundance of Firmicute and Actinobacteria. The results of metagenomic analysis further reveal that the ATP-binding cassette (ABC) transporters and all related pathways of Propanoate metabolism (ko00640) were enriched when P. acidipropionici was added. For Propanoate metabolism, most functional genes involved in the conversion from Glycolysis / Gluconeogenesis (ko00010) to Propanoyl-CoA and conversion from Propanoyl-CoA to propionic acid were enhanced after bioaugmentation with P. acidipropionici, thereby promoting propionic acid production. As such, bioaugmentation with P. acidipropionici was effective in the anaerobic acidification of kitchen waste for propionic acid production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127843DOI Listing

Publication Analysis

Top Keywords

propionic acid
20
acid production
16
kitchen waste
12
propionibacterium acidipropionici
8
anaerobic acidification
8
acidification kitchen
8
propanoate metabolism
8
bioaugmentation acidipropionici
8
acidipropionici
7
bioaugmentation
5

Similar Publications

Inclusion of Black Soldier Fly Larval Oil in Ruminant Diets Influences Feed Consumption, Nutritional Digestibility, Ruminal Characteristics, and Methane Estimation in Thai-Indigenous Steers.

J Anim Physiol Anim Nutr (Berl)

January 2025

Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.

The objective of this study was to examine the impact of black soldier fly larval oil (BSFO) on feed consumption, nutritional digestibility, ruminal characteristics and methane (CH) estimation in Thai-indigenous steers. Four male Thai native steers (Bos indicus) weighing 383 ± 9.0 kg were used in this investigation.

View Article and Find Full Text PDF

Background/objectives: Ergothioneine (EGT) is an effective antioxidant that animals cannot produce and has an important anti-inflammatory role in cell protection, which can help lower the risk of various diseases. In this study, we investigated the potential role of gut microbiota in the production of EGT, which was found to increase in the mouse liver after dietary supplementation with betaine (BET) or polydextrose (PDX).

Methods: The effects of BET and PDX on the gut microbiota and tissue EGT content were investigated using a diet-induced obese mouse model and simulated fermentation in the human colon.

View Article and Find Full Text PDF

Drought stress can adversely affect the seed germination and seedling growth of wheat plants. This study analyzed the effect of drought on seed germination and the morphological parameters of seedlings from ten winter wheat genotypes. The primary focus was to elucidate the effects of two drought intensities on metabolic status in wheat seedlings.

View Article and Find Full Text PDF

Background: Metabolic syndrome (MS) refers to a cluster of metabolic disorders characterized by systemic chronic inflammation. Er Miao San (EMS) is a classic traditional Chinese medicine compound containing Phellodendron amurense and Atractylodis rhizome at a ratio of 1:1, proven to be effective against inflammatory diseases in clinical practice. Nevertheless, the precise functions of EMS in treating MS and its underlying mechanism have yet to be elucidated.

View Article and Find Full Text PDF

Gut-derived lactic acid enhances tryptophan to 5-hydroxytryptamine in regulation of anxiety via .

Gut Microbes

December 2025

MOE/NHC/CAMS Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

The gut microbiota plays a pivotal role in anxiety regulation through pathways involving neurotransmitter production, immune signaling, and metabolic interactions. Among these, gut-derived serotonin (5-hydroxytryptamine, 5-HT), synthesized from tryptophan metabolism, has been identified as a key mediator. However, it remains unclear whether specific microbial factors regulate tryptophan metabolism to influence 5-HT production and anxiety regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!