AI Article Synopsis

  • The study focused on understanding how membrane fouling occurs in anaerobic membrane bioreactors (AnMBR) when treating swine wastewater at various organic loading rates (OLR).
  • Results indicated that AnMBR effectively removes pollutants and produces energy, but higher OLR leads to worse fouling due to sludge and organic matter buildup.
  • Microbial analysis revealed that increased OLR causes a change in bacterial communities, particularly the growth of fouling-related bacteria, while backwashing can help restore membrane efficiency.

Article Abstract

This study aimed to reveal the membrane fouling mechanisms during anaerobic membrane bioreactor (AnMBR) operation for swine wastewater treatment under different organic loading rates (OLR). Results showed that AnMBR could achieve high pollutant removal (71.9-83.6 %) and energy recovery (0.18-0.23 L-CH/g-COD) at an OLR range of 0.25-0.5 g-COD/g-VSS.d, realizing energy production. However, higher OLR would aggravate the membrane fouling due to accumulation of fine sludge particles, organic foulants, and extracellular polymeric substances (EPS) on cake layer. Based on the high-throughput sequencing, microbial communities significantly changed and fouling-causing bacteria (e.g. Pseudomonas, Methanosarcina and Methanothrix) enriched in the cake layer at higher OLR conditions, leading to lower membrane permeability. Backwash can effectively remove the cake layer from the membrane surface and recover membrane permeability. The present study provides important information about membrane fouling and microbial information that could have significant impact on large-scale AnMBR application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2022.127850DOI Listing

Publication Analysis

Top Keywords

membrane fouling
12
cake layer
12
energy production
8
swine wastewater
8
membrane
8
anaerobic membrane
8
membrane bioreactor
8
higher olr
8
membrane permeability
8
enhanced energy
4

Similar Publications

Computational fluid particle dynamics modeling of tangential flow filtration in perfusion cell culture.

Bioprocess Biosyst Eng

January 2025

Cell Culture Development, Biogen, 5000 Davis Drive, Research Triangle Park, NC, 27709, USA.

Membrane fouling is a common and complex challenge with cell culture perfusion process in biopharmaceutical manufacturing that can have detrimental effects on the process performance. In this study, we evaluated a method to calculate the hollow fiber membrane resistance at different time points for water and supernatant. In addition, the number of subvisible particles of < 200 nm.

View Article and Find Full Text PDF

Stacked meshes with super-wettability atmospheric plasma for efficient emulsion separation.

Nanoscale

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Common filter membranes for emulsion separation often require time-intensive preparation and extensive use of chemicals, necessitating a fast-processing and eco-friendly alternative. This study introduces a 2-layer stacked nylon mesh treated with surface diffuse atmospheric plasma (SDAP) for rapid and efficient emulsion separation. Commercial nylon mesh exhibited durable super-wetting properties after just 30 s of SDAP treatment, which was sufficient for effective emulsion separation.

View Article and Find Full Text PDF

Efficient separation and preconcentration of nanoparticles are crucial in a wide range of biomedical applications, particularly as target substances continue to diminish in size. In this study, we introduce an electric field-assisted membrane system that synergistically combines oversized-pore membranes with an electrokinetic particle retention mechanism. Utilizing Ti/Au-coated poly(tetrafluoroethylene) (PTFE) membranes, our approach generates electrokinetic forces to effectively separate and retain charged nanoparticles even smaller than the pores, achieving a separation efficiency over 99% and a preconcentration factor of 1.

View Article and Find Full Text PDF

In this work CS-SDAEM polymer brushes with long-chain structure were synthesized, and TiO/CS-SDAEM nanoparticles were prepared by modifying them on the TiO surface. The prepared modified membrane can effectively degrade dyes through photocatalysis and can reduce the contamination rate of the membrane during use. The separation membrane achieves efficient removal of contamination by self-cleaning.

View Article and Find Full Text PDF

Investigation of carbon dioxide for scale control in reverse osmosis systems.

J Environ Manage

December 2024

Air Liquide, Brussels, Belgium. Electronic address:

The operation of a reverse osmosis (RO) system is often severely hindered by the deposition of inorganic scales such as calcium carbonate on the membrane surface. Mitigation of this scaling phenomenon requires suitable pH control strategies, with the use of strong mineral acids (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!