Seasonal flexibility of kidney structure and factors regulating water and salt in Eremias multiocellata.

Comp Biochem Physiol A Mol Integr Physiol

College of Biological Sciences and Engineering, North Minzu University, Yinchuan 750021, China; Key Laboratory of Ecological Protection of Agro-pastoral Ecotones in the Yellow River Basin of National Ethnic Affairs Commission, Yinchuan 750021, China. Electronic address:

Published: December 2022

Although sodium and water reabsorption by the kidney plays a major role in maintaining body fluid homeostasis, the seasonal response of renal morphology and the factors involved in water and salt regulation are not well known, especially in reptiles. Eremias multiocellata is a typical desert-dwelling lizard. Here, we compared water and salt regulation of E. multiocellata in winter (hibernation), spring (emerging from hibernation), and summer (active) according to histomorphometry and the expression of genes such as those encoding aquaporins (AQP1, AQP2, AQP3), the Na-Cl cotransporter (NCC), the Na-K-2Cl cotransporter (NKCC2), renin (Ren), angiotensin II receptor type 2 (AT2R), and endothelial nitric oxide synthase (eNOS) in the kidneys. The results showed that the area of Bowman's capsule and the glomerular density were lower in winter compared to summer and spring, and the lumen size of the DCT, PCT, and IS was greater in spring than in summer. Compared to summer and spring, the expression of AQP1, AQP3, NCC, NKCC2, Ren, and eNOS was significantly decreased in winter, whereas the expression of AQP2 and AT2R remained high. These results indicate that E. multiocellata balances its water budget via morpho-functional changes in different seasons. Although renal function was temporarily attenuated during winter, the regulation of aquaporins genes was not synchronous, indicating the complexity and particularity of water and salt regulation in desert lizards when facing the constraints of harsh environmental conditions, seasonal variations, and hibernation. These results will enrich the understanding of water and salt regulation mechanisms in desert reptiles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2022.111301DOI Listing

Publication Analysis

Top Keywords

water salt
20
salt regulation
16
eremias multiocellata
8
compared summer
8
summer spring
8
water
7
salt
5
regulation
5
seasonal flexibility
4
flexibility kidney
4

Similar Publications

This report documents complications in false pilchard Harengula clupeola and scad Decapterus macarellus associated with a salinomycin (60 mg kg-1) and amprolium (100 mg kg-1) gel feed treatment, along with prolonged temperature increase, for an Enteromyxum leei outbreak in a salt water, mixed species, public aquarium exhibit. Shortly after administration, a mass mortality event ensued where hundreds of false pilchards and a few scad died. Medicated gel feed was noted within the gastrointestinal tracts of all affected fish.

View Article and Find Full Text PDF

Conjugated polymers, represented by polymeric carbon nitrides (PCNs), have risen to prominence as new-generation photocatalysts for overall water splitting (OWS). Despite considerable efforts, achieving highly crystalline PCNs with minimal structural defects remains a great challenge, and it is also difficult to examine the exact impact of complex defect states on OWS process, which largely limits their quantum efficiency. Herein, we devise a 'in-situ salt flux' assisted copolymerization protocol by using nitrogen-rich and nitrogen-deficient monomers to precisely manipulate the structural defects of poly (triazine imide) (PTI) single crystals.

View Article and Find Full Text PDF

The mineralocorticoid receptor (MR) is a nuclear transcription factor that plays a critical role in regulating fluid, electrolytes, blood pressure, and hemodynamic stability. In conditions such as chronic kidney disease (CKD) and heart failure (HF), MR overactivation leads to increased salt and water retention, inflammatory and fibrotic gene expression, and organ injury. The MR is essential for transcriptional regulation and is implicated in metabolic, proinflammatory, and pro-fibrotic pathways.

View Article and Find Full Text PDF

Removal of lithium from aqueous solutions by precipitation with sodium and choline alkanoate soaps.

Green Chem

December 2024

KU Leuven, Department of Chemistry Celestijnenlaan 200F P.O. box 2404 B-3001 Leuven Belgium

In order to comply with the expected tightening of discharge limits for lithium to surface waters, the lithium-ion battery industry will need access to methods to reduce the concentration of lithium in wastewater down to ppm levels. In this Communication, we discuss the possibility of using sodium and choline soaps as precipitating agents for lithium, comparing the two soap classes and probing the influence of the carbon chain length. It was found that lithium concentrations down to 10 ppm can be reached with sodium stearate, and down to 1 ppm with choline stearate, using a slight excess of the precipitating agent.

View Article and Find Full Text PDF

In processes such as electrodialysis, the applied electrical potential is constrained by concentration polarization at the membrane/solution interface. This polarization, which intensifies at higher current densities, impedes ion transport efficiency and may lead to problems such as salt precipitation, membrane degradation, and increased energy consumption. Therefore, understanding concentration polarization is essential for enhancing membrane performance, improving efficiency, and reducing operational costs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!