Aims: Colorectal cancer (CRC) is a very heterogeneous disease. One of its hallmarks is the dysregulation of protein kinases, which leads to molecular events related to carcinogenesis. Hence, kinase inhibitors have been developed and are a new strategy with promising potential for CRC therapy. This study aims to explore AD80, a multikinase inhibitor, as a drug option for CRC, with evaluation of the PI3K/AKT/mTOR and MAPK (ERK1/2) status of CRC cells' panel and the cytotoxicity of AD80 in those cells, as well as in normal colon cells.
Main Methods: Cellular and molecular mechanisms, such as clonogenicity, cell cycle, morphology, protein and mRNA expression, were investigated in CRC cells after AD80 exposure.
Key Findings: Results show that PI3K/AKT/mTOR and MAPK signaling pathways are upregulated in CRC cellular models, with increased phosphorylation of mTOR, P70S6K, S6RP, 4EBP1, and ERK1/2. Hence, AD80 selectively reduces cell viability of CRC cells. Therefore, the antitumor mechanisms of AD80, such as clonogenicity inhibition (reduction of colony number and size), G/M arrest (increased G/M population, and CDKN1B mRNA expression), DNA damage (increased H2AX and ERK1/2 phosphorylation, and CDKN1A and GADD45A mRNA expression), apoptosis (increased PARP1 cleavage, and BAX, PMAIP1, BBC3 mRNA expression) and inhibition of S6RP phosphorylation were validated in CRC model.
Significance: Our findings reinforce kinases as promising cancer therapeutic targets for the treatment of colorectal cancer, suggesting AD80 as a drug candidate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.lfs.2022.120911 | DOI Listing |
Sci Rep
December 2024
Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410078, Hunan, P. R. China.
Dopamine (DA) plays important roles in various behaviors, including learning and motivation. Recently, THOC5 was identified as an important regulator in the development of dopaminergic neurons. However, how THOC5 is regulated has not been explored.
View Article and Find Full Text PDFSci Rep
December 2024
Institute of Medical Sciences, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
Astrocyte to neuron reprogramming has been performed using viral delivery of neurogenic transcription factors in GFAP expressing cells. Recent reports of off-target expression in cortical neurons following adeno-associated virus (AAV) transduction to deliver the neurogenic factors have confounded our understanding of the efficacy of direct cellular reprogramming. To shed light on potential mechanisms that may underlie the neuronal off-target expression of GFAP promoter driven expression of neurogenic factors in neurons, two regionally distinct cortices were compared-the motor cortex (MC) and medial prefrontal cortex (mPFC)-and investigated: (1) the regional tropism and astrocyte transduction with an AAV5-GFAP vector, (2) the expression of Gfap in MC and mPFC neurons; and (3) material transfer between astrocytes and neurons.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China.
Although CCL17 has been reported to exert a vital role in many cancers, the related studies in the thyroid carcinoma have never reported. As a chemokine, CCL17 plays a positive role by promoting the infiltration of immune cells into the tumor microenviroment (TME) to influence tumor invasion and metastasis. Therefore, this study is aimed to investigate the association of CCL17 level with potential prognostic value on tumor immunity in the thyroid carcinoma (THCA) based on the bioinformatics analysis.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA.
The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!