Factor-based assessment of continuous bio-H production from cheese whey.

Chemosphere

Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Italy.

Published: December 2022

Despite having been widely investigated, dark fermentative H production from organic residues is still limited by process-related issues which may hamper the perspectives of full-scale process implementation. Such constraints are mainly due to the process complexity, which is largely affected by multiple and often mutually interacting factors. In the present work, the results of continuous fermentative H production experiments using synthetic cheese whey as the input substrate were used to gain detailed knowledge of the process features and identify suitable and critical operating conditions. Specifically, innovative process interpretation involved a combination of analytical characterization of the fermentation broth, mass balance calculations and statistical methods (correlation and principal component analyses) to derive systematic considerations for process characterization and scale-up. The metabolic products mainly included acetate and butyrate, which however were likely to derive (in different proportions depending on the operating conditions) from both hydrogenogenic and competing pathways. For some tests, lactate and succinate were also found to have been formed. It was observed that the main features of the process (H yield and rate, stability condition) were correlated with the operational and analytical parameters. The first three principal components identified by the statistical analysis were able to account for: 1) the effect of retention time and total metabolites produced; 2) biogas (H and CO) generation, butyrate production and stability condition; and 3) organic loading rate and propionate production. The results suggested that the main features of hydrogenogenic fermentation can be described by a reduced set of factors that may be usefully adopted for both process monitoring and prediction purposes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.136174DOI Listing

Publication Analysis

Top Keywords

cheese whey
8
fermentative production
8
operating conditions
8
main features
8
stability condition
8
process
7
production
5
factor-based assessment
4
assessment continuous
4
continuous bio-h
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!