Lability and bioaccessibility of anthropogenic toxic heavy metals in arid calcareous soils are critical to understand their ecological and health risks. This study examined toxic heavy metal speciation in the calcareous soil contaminated by nonferrous metal smelting. Results demonstrated that approximately 70 years' nonferrous metal smelting and mining in Baiyin led to significant contamination of nearby soil down to about 200 cm depth by cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn), with more serious contamination in the downwind areas of smelting or mining. More than half of Cd, Cu, Pb, and Zn in the soil was present in the labile fractions while more than 75% of cobalt (Co), chromium (Cr), nickel (Ni), and vanadium (V) was present in the residual fraction. Carbonate minerals in this calcareous soil play an important role in the labile fractions, with approximate 25% of Cd and Pb and 15% of Cu and Zn bound in carbonates. Bioaccessible Cd, Cu, Pb, and Zn in the soil were approximately 49.8%, 29.4%, 12.2%, and 33.8% in gastric phase and 13.5%, 15.9%, 4.3%, and 9.1% in intestinal phase of their total concentrations, respectively. Therefore, Cd and Zn were removed from gastric solution to a greater extent than Cu and Pb by neutral intestine environment. However, bioaccessible Co, Cr, Ni, and V in the soil were less than 3% of their total concentrations. Bioaccessibility of these metals but Cu in this calcareous soil was significantly lower than that for the acidic Ultisols and Alfisols in U.S. The concentrations of Cd, Cu, Pb, Zn, and Ni in each chemical and bioaccessible forms were significantly correlated linearly with their total concentrations in the calcareous soil, while only residual concentration was significantly correlated with the total concentration for Co, Cr, and V. These linear slopes showed that relative lability and bioaccessibility increased for Cd, but decreased for Cu, Pb, and Zn with the increase in their total concentrations in the calcareous soil. Direct oral soil ingestion would not pose a non-carcinogenic health risk to local children. However, very high potential ecological risk would be caused by these metals in the soil. These results provide improved insights into the biogeochemical processes of anthropogenic toxic heavy metals in the arid calcareous soils worldwide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2022.136200 | DOI Listing |
Ecotoxicol Environ Saf
January 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
To investigate the remediation effects of various modified biochar materials derived from different impregnation agents on Cd- and Pb-contaminated calcareous soil, nitrogen (N-), phosphorus (P-), sulfur (S-), and iron (Fe-) modified biochar materials (NBC, PBC, SBC, FBC) were fabricated through the impregnation-pyrolysis method and employed to immobilize Pb and Cd in the calcareous soil. The characterization results showed that NBC exhibited an uneven pore size distribution and increased aromaticity, while PBC and SBC had increased pH and ash content. Pot experiments demonstrated significantly different effects of various modified biochar materials on soil immobilization and plant uptake of Cd and Pb.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Crop Science, Faculty of Agricultural Sciences, University of Hohenheim, Stuttgart, Germany.
Plant growth-promoting microorganisms can enhance sulfur uptake and boost crop production. This study was conducted to evaluate the changes in physiology, metabolism, and yield of chickpeas following the application of sulfur and two microbial consortia: (1) Thiobacillus sp., Bacillus subtilis, Paraburkholderia fungorum, and Paenibacillus sp.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Institute for Ecology of Industrial Areas, 6 Kossutha Street, 40-844, Katowice, Poland. Electronic address:
Green roofs and walls offer many benefits, not only in terms of the ecosystem services, but also in terms of improving building performance. The growing medium is the most important component of green roofs and walls. It should ensure stable plant growth with minimal maintenance and the proper choice is crucial for the survival and performance of the vegetation.
View Article and Find Full Text PDFOecologia
January 2025
Plant Evolutionary Ecology, Institute of Ecology, Evolution and Diversity, Faculty of Biological Sciences, Goethe University Frankfurt, Max-Von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
Rapid environmental changes across Europe include warmer and increasingly variable temperatures, changes in soil nutrient availability, and pollinator decline. These abiotic and biotic changes can affect natural plant populations and force them to optimize resource use against competitors. To date, the evolution of competitive ability in the context of changes in nutrient availability remains understudied.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China.
Inoculating zinc solubilizing microorganisms (ZSMs) is considered as a promising strategy for increasing Zn phytoavailability in soils with low Zn availability. In present study, we screened six strains of ZSMs from rhizosphere of green manure crop, including three strains of fungi, , and three strains of bacteria, . We conducted a pot experiment of Bok choy inoculated with different ZSMs to analyze the Zn content in shoots and roots, and compared the Zn solubilizing effect of ZSMs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!