The occurrence of 50 multi-class pollutants comprising 18 polycyclic aromatic hydrocarbons (PAHs), 12 phthalate esters (PAEs), 12 organophosphorus flame retardants (OPFRs), 6 synthetic musk compounds (SMCs) and 2 bisphenols was studied in atmospheric particulate matter (PM) samples collected at an industrial area focused on automotive manufacturing located at the Southwestern Atlantic European region (Vigo city, Spain) during 1-year period. Among all quantitated pollutants in PM samples, bisphenol A (BPA) was the most predominant with an average concentration of 6180 pg m, followed by PAHs comprising benzo(b+j)fluoranthene (BbF + BjF) and benzo(g,h,i)perylene (BghiP), accounting for 546 pg m and 413 pg m respectively. In addition, two OPFRs concerning tris(chloropropyl) phosphate (TCPP) and triphenyl phosphine oxide (TPPO) were the next following the concentration order, accounting for 411 pg m and 367 pg m respectively; being butyl benzyl phthalate (BBP) the most profuse PAE (56.1 pg m by average). High relative standard deviations (RSDs) were observed during the whole sampling period, while statistically significant differences were only observed for PAHs concentrations during cold and warm seasons. Furthermore, some water-soluble ions and metal(oid)s were analysed in PM samples to be used as PM source tracers, whose concentrations were quite below the target levels set in the current legislation. Data obtained from principal component analysis (PCA) and PAHs molecular indices suggested a pyrogenic and petrogenic origin for PAHs, whereas occurrence of the remaining compounds seems to be attributed to resources used in the automotive industrial activity settled in the sampling area. Moreover, although a substantial anthropogenic source to PM in the area was observed, marine and soil resuspension contributions were also accounted. Finally, carcinogenic and non-carcinogenic risks posed by PM-bound pollutants inhalation were assessed, being both averages within the safe level considering the whole period.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2022.114195 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!