Arbuscular mycorrhizal fungi (AMF) have gained remarkable importance, having been proved to alleviate drought stress-induced damage in wheat due to their ability to ameliorate plant water use efficiency and antioxidant enzyme activity. However, despite the current relevance of the topic, the molecular and physiological processes at the base of this symbiosis never consider the single cultivar affinity to mycorrhization as an influencing factor for the metabolic response in the AMF-colonized plant. In the present study, the mycorrhizal affinity of two durum wheat species (T. turgidum subsp. durum (Desf.)) varieties, Iride and Ramirez, were investigated. Successively, an untargeted metabolomics approach has been used to study the fungal contribution to mitigating water deficit in both varieties. Iride and Ramirez exhibited a high and low level of mycorrhizal symbiosis, respectively; resulting in a more remarkable alteration of metabolic pathways in the most colonised variety under water deficit conditions. However, the analysis highlighted the contribution of AMF to mitigating water deficiency in both varieties, resulting in the up- and down-regulation of many amino acids, alkaloids, phenylpropanoids, lipids, and hormones.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phytochem.2022.113381DOI Listing

Publication Analysis

Top Keywords

water deficit
12
cultivar affinity
8
arbuscular mycorrhizal
8
mycorrhizal fungi
8
varieties iride
8
iride ramirez
8
mitigating water
8
mycorrhizal
5
water
5
pivotal role
4

Similar Publications

Introduction: Plant physiology response and adaptation to drought stress has become a hotspot in plant ecology and evolution. possesses high ecological, ornamental and economic benefits. It has large root system and tolerance to cold, drought and poor soil.

View Article and Find Full Text PDF

Drought is a reoccurring natural phenomenon that presents significant challenges to agricultural production, ecosystem stability, and water resource management. The Central Highlands of Vietnam, a major region of industrial crops and vegetation ecosystems, has become increasingly vulnerable to drought impacts. Despite this vulnerability, limited research has explored the specific characteristics of drought and its seasonal effects on vegetation ecosystems in the region.

View Article and Find Full Text PDF

Various practical strategies have been employed to mitigate the detrimental effects of water deficit stress on plants such as application of nano-stimulants. Nanosilicon plays a crucial role in alleviating the deleterious impacts of both abiotic and biotic stresses in plants by modulating various phyto-morphological and physiological processes. This study aimed to examine the combined effects of drought stress and nanosilicon application on the morphological traits and essential oil content and compositions of hemp (Cannabis sativa L.

View Article and Find Full Text PDF

Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.

Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.

Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!