The presence of mesenchymal progenitor cells (MPCs) in rheumatoid arthritis (RA) articular cartilage is sparsely investigated largely owing to the persistent pathogenic disease condition and lack of specific biomarkers. Considering the recent advancements for potential cell-based therapies in immunomodulatory diseases, such as RA, this in vitro study was aimed at investigating the cellular, molecular, and differentiation characteristics of human RA cartilage-derived MPCs. Articular cartilage fragments from RA patients were obtained for the isolation of MPCs and characterization of their cellular and biological properties, cytogenetic stability, pluripotency, and plasticity. Established MPCs were phenotypically identified using a panel of markers, and their differentiation ability into mesenchymal lineages was assessed by cytochemical staining and the expression of molecular markers. MPCs displayed a heterogenous population of cells with characteristic features of multipotent stem cells. Cells had higher viability, proliferative rate, and colony-forming ability. Further, MPCs showed the expression of pluripotency markers, cytogenetic stability, and minimal replicative senescence. In addition, MPCs differentiated into osteocytes, adipocytes, and chondrocytes, and modulated the expression of each lineage-specific gene markers. The results demonstrated the availability of a viable pool of MPCs residing in RA cartilage, which could serve as an ideal cell source for reinstating native homotypic cartilage.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000526677DOI Listing

Publication Analysis

Top Keywords

mesenchymal progenitor
8
progenitor cells
8
rheumatoid arthritis
8
mpcs
8
articular cartilage
8
cytogenetic stability
8
cells
5
cartilage
5
molecular characterization
4
characterization differentiation
4

Similar Publications

Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established.

View Article and Find Full Text PDF

Purpose: A substantial proportion of children with high risk Neuroblastoma die within the first 5 years post-diagnosis despite the complex treatment applied. In the recent years, tumor environment has been revealed as key factor for cancer treatment efficacy. In this sense, non-tumorigenic Neural Crest progenitor cells from high risk patients, have been described as part of Neuroblastoma stroma, promoting tumor growth and contributing to mesenchyme formation.

View Article and Find Full Text PDF

Bone marrow adipose tissue (BMAT) has garnered significant attention due to its critical roles in leukemia pathogenesis, cancer metastasis, and bone marrow failure. BMAT is a metabolically active, distinct tissue that differs from other fat depots. Marrow adipocytes, closely interacting with hematopoietic stem/progenitor cells and osteoblasts, play a pivotal role in regulating their functions.

View Article and Find Full Text PDF

During embryogenesis, endothelial cells (ECs) are generally described to arise from a common pool of progenitors termed angioblasts, which diversify through iterative steps of differentiation to form functionally distinct subtypes of ECs. A key example is the formation of lymphatic ECs (LECs), which are thought to arise largely through transdifferentiation from venous endothelium. Opposing this model, here we show that the initial expansion of mammalian LECs is primarily driven by the in situ differentiation of mesenchymal progenitors and does not require transition through an intermediate venous state.

View Article and Find Full Text PDF

Early embryos display a remarkable ability to regulate tissue patterning in response to changes in tissue size. However, it is not clear whether this ability continues into post-gastrulation stages. Here, we performed targeted removal of dorsal progenitors in the zebrafish tailbud using multiphoton ablation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!