In this paper, the potential of micellar solutions of the anionic surfactant sodium dodecyl sulfate (SDS) as eluents in dispersive micro-solid phase extraction (D-μSPE) using polydopamine-coated magnetite nanoparticles (FeO@PDA NPs) for the extraction and preconcentration of seven basic drugs (bupropion, citalopram, fluoxetine, mianserin, nomifensine, trimipramine, and viloxazine) is explored for the first time (to the best to our knowledge) and compared with conventional hydro-organic eluents. The impact of the sample solution pH, FeO@PDA NPs and PDA coating amounts and extraction time on the extraction efficiency (EE), as well as the composition of the eluent on the overall efficiency (OE) are studied. Under the selected experimental conditions (50 mg of FeO@PDA NPs, 100 μL of 1 M NH, 5 min of extraction time and 0.15 M SDS at pH 2.6 as eluent), EE and OE values were higher than 90% for all compounds and for the most hydrophobic compounds (trimipramine, fluoxetine and mianserin), respectively. The results shown in this paper demonstrate the suitability of FeO@PDA NPs as a sorbent for the extraction of antidepressants as well as the advantages of using SDS micellar solutions over classic hydro-organic eluents containing methanol, acetonitrile or tetrahydrofuran. Finally, the stability and reusability of the FeO@PDA NPs is proven.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2022.463430 | DOI Listing |
Sci Rep
December 2024
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém, 8200, Hungary.
Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
Because a significant portion of oil remains in carbonate reservoirs, efficient techniques are essential to increase oil recovery from carbonate reservoirs. Wettability alteration is crucial for enhanced oil recovery (EOR) from oil-wet reservoirs. This study investigates the impact of different substances on the wettability of dolomite and calcite rocks.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Chemical Engineering, The University of Adelaide, North Terrace, South Australia, 5005, Australia.
Nanomaterials have become essential in the daily lives, finding applications in food, skincare, drugs, and vaccines. Traditionally, the surface chemistry of nanoparticles (NPs) is considered the key factor in determining their interactions with biological systems. However, recent studies have shown that the mechanical properties of nanomaterials are equally important in regulating nano-bio interactions, though they have often been overlooked.
View Article and Find Full Text PDFBrief Bioinform
November 2024
School of Science, China Pharmaceutical University, Nanjing 211198, China.
The supervision of novel psychoactive substances (NPSs) is a global problem, and the regulation of NPSs was heavily relied on identifying structural matches in established NPSs databases. However, violators could circumvent legal oversight by altering the side chain structure of recognized NPSs and the existing methods cannot overcome the inaccuracy and lag of supervision. In this study, we propose a scaffold and transformer-based NPS generation and Screening (STNGS) framework to systematically identify and evaluate potential NPSs.
View Article and Find Full Text PDFPharm Dev Technol
December 2024
Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!