Purpose: To investigate whether the early perfusion change in hepatocellular carcinoma (HCC) predicts the long-term therapeutic response to atezolizumab plus bevacizumab.

Methods: We retrospectively selected 19 subjects (median age: 62 years, 4 females, and 15 males) having advanced HCC and treated with atezolizumab alone (n = 3) or in combination with bevacizumab (n = 16). The 4-phased CT or MRI imaging was performed for each subject before and at 9 ± 2 and 21 ± 5 weeks after therapy initiation. The tumor-to-liver signal ratio in the arterial phase was used to estimate the tumor perfusion. The change in tumor perfusion from the baseline to the 1st follow-up exam was correlated with the tumor response evaluated using mRECIST at the 2nd follow-up exam. The difference between favorably responding and non-responding groups was statistically analyzed using one-way ANOVA.

Results: The mean tumor long axis in the baseline image was 59 ± 47 mm. The HCC perfusion changes were -26 ± 18% for complete (or partial) response (CR/PR, n = 8), -24 ± 12% for stable disease (SD, n = 8), and 9 ± 13% for progressive disease (PD, n = 3). The HCC perfusion change of the CR/PR groups was significantly lower than that of the PD group (p = 0.0040). The HCC perfusion changes between the SD and PD groups were also significantly different (p = 0.0135). The sensitivity and specificity of the early perfusion change to predict the long-term progression of the disease were 100 and 94%, respectively.

Conclusion: The early change in HCC perfusion may predict the long-term therapeutic response to atezolizumab plus bevacizumab, promoting personalized treatment for HCC patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9971356PMC
http://dx.doi.org/10.1007/s12029-022-00858-4DOI Listing

Publication Analysis

Top Keywords

perfusion change
20
hcc perfusion
16
perfusion
9
change hepatocellular
8
hepatocellular carcinoma
8
atezolizumab bevacizumab
8
early perfusion
8
long-term therapeutic
8
therapeutic response
8
response atezolizumab
8

Similar Publications

To assess the effectiveness of transcatheter aortic valve replacement (TAVR) on electrocardiographic remodeling in patients with severe aortic stenosis (AS), and identify its influencing factors. A cohort study was conducted on patients with a confirmed diagnosis of severe AS who successfully underwent TAVR at the Second Affiliated Hospital of Dalian Medical University between June 2018 and March 2023. Data, including standard 15-lead electrocardiograms and echocardiograms, were collected before the operation, 1 week after the operation, and 3 months after the operation.

View Article and Find Full Text PDF

Purpose: X-linked adrenoleukodystrophy (XALD) can affect the eyes. Existing therapies are hampered by early quantitative examination methods. This study used an optical coherence tomography angiography system (OCTA) to investigate retinal microvascular density and perfusion in XALD patients.

View Article and Find Full Text PDF

Heart failure is a prevalent global health issue. Heart failure with preserved ejection fraction (HFpEF), which already represents half of all heart cases worldwide, is projected to further increase, driven by aging populations and rising cardiovascular risk factors. Effective therapies for HFpEF remain limited, particularly due to its pathophysiological heterogeneity and incomplete understanding of underlying pathomechanisms and implications.

View Article and Find Full Text PDF

Staining brain slices with acetoxymethyl ester (AM) Ca dyes is a straightforward procedure to load multiple cells, and Fluo-4 is a commonly used high-affinity indicator due to its very large dynamic range. It has been shown that this dye preferentially stains glial cells, providing slow and large Ca transients, but it is questionable whether and at which temporal resolution it can also report Ca transients from neuronal cells. Here, by electrically stimulating mouse hippocampal slices, we resolved fast neuronal signals corresponding to 1%-3% maximal fluorescence changes.

View Article and Find Full Text PDF

pH regulation of eukaryotic cells is of crucial importance and influences different mechanisms including chemical kinetics, buffer effects, metabolic activity, membrane transport and cell shape parameters. In this study, we develop a microfluidic system to rapidly and precisely control a continuous flow of ionic chemical species to acutely challenge the intracellular pH regulation mechanisms and confront predictive models. We monitor the intracellular pH dynamics in real-time using pH-sensitive fluorescence imaging and establish a robust mathematical tool to translate the fluorescence signals to pH values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!