Objectives: To assess the performance of DeepSurv, a deep learning-based model in the survival prediction of laryngeal squamous cell carcinoma (LSCC) using the Surveillance, Epidemiology, and End Results (SEER) database.
Methods: In this large population-based study, we developed and validated a deep learning survival neural network using pathologically diagnosed patients with LSCC from the SEER database between January 2010 and December 2018. Totally 13 variables were included in this network, including patients baseline characteristics, stage, grade, site, tumor extension and treatment details. Based on the total risk score derived from this algorithm, a three-knot restricted cubic spline was plotted to exhibit the difference of survival benefits from two treatment modalities.
Results: Totally 6316 patients with LSCC were included in the study, of which 4237 cases diagnosed between 2010 and 2015 were selected as the development cohort, and the rest (2079 cases diagnosed from 2016 to 2018) were the validation cohort. A state-of-the-art deep learning-based model based on 23 features (i.e., 13 variables) was generated, which showed more superior performance in the prediction of overall survival (OS) than the tumor, node, and metastasis (TNM) staging system (C-index for DeepSurv vs TNM staging = 0.71; 95% CI 0.69-0.74 vs 0.61; 95% CI 0.60-0.63). Interestingly, a significantly nonlinear association between total risk score and treatment effectiveness was observed. When the total risk score ranges 0.1-1.5, surgical treatment brought more survival benefits than nonsurgical one for LSCC patients, especially in 70.5% of patients staged III-IV.
Conclusions: The deep learning-based model shows more potential benefits in survival estimation for patients with LSCC, which may potentially serve as an auxiliary approach to provide reliable treatment recommendations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00405-022-07627-w | DOI Listing |
Heliyon
January 2025
Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
Neurosignaling is increasingly recognized as a critical factor in cancer progression, where neuronal innervation of primary tumors contributes to the disease's advancement. This study focuses on segmenting individual axons within the prostate tumor microenvironment, which have been challenging to detect and analyze due to their irregular morphologies. We present a novel deep learning-based approach for the automated segmentation of axons, AxonFinder, leveraging a U-Net model with a ResNet-101 encoder, based on a multiplexed imaging approach.
View Article and Find Full Text PDFInt J Exerc Sci
December 2024
Department of Sport and Health Sciences, Technical University of Munich, Munich, BY, GERMANY.
In weightlifting, quantitative kinematic analysis is essential for evaluating snatch performance. While marker-based (MB) approaches are commonly used, they are impractical for training or competitions. Markerless video-based (VB) systems utilizing deep learning-based pose estimation algorithms could address this issue.
View Article and Find Full Text PDFBMC Med Imaging
January 2025
Department of Magnetic Resonance Imaging, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
Background: Conventional hip joint MRI scans necessitate lengthy scan durations, posing challenges for patient comfort and clinical efficiency. Previously, accelerated imaging techniques were constrained by a trade-off between noise and resolution. Leveraging deep learning-based reconstruction (DLR) holds the potential to mitigate scan time without compromising image quality.
View Article and Find Full Text PDFOral Radiol
January 2025
Department of Software Engineering, Faculty of Engineering, Muğla Sıtkı Koçman University, Muğla, 4800, Turkey.
Objectives: Pulp stones are ectopic calcifications located in pulp tissue. The aim of this study is to introduce a novel method for detecting pulp stones on panoramic radiography images using a deep learning-based two-stage pipeline architecture.
Materials And Methods: The first stage involved tooth localization with the YOLOv8 model, followed by pulp stone classification using ResNeXt.
Acta Physiol (Oxf)
February 2025
Institute of Physiology, Center for Space Medicine and Extreme Environments Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.
Objective: Accurate blood pressure (BP) measurement is crucial for the diagnosis, risk assessment, treatment decision-making, and monitoring of cardiovascular diseases. Unfortunately, cuff-based BP measurements suffer from inaccuracies and discomfort. This study is the first to access the feasibility of machine learning-based BP estimation using impedance cardiography (ICG) data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!