AI Article Synopsis

  • Minimal residual disease (MRD) detection is critical for predicting survival and relapse in acute myeloid leukemia, and it can be assessed using molecular methods or flow cytometry.
  • An automated method called Cinderella was developed to measure both bone marrow dilution and MRD levels simultaneously, improving accuracy in results.
  • Cinderella utilizes explainable artificial intelligence to analyze complex cell populations in bone marrow and peripheral blood, reducing the chances of false-negative MRD findings and enhancing the reliability of MRD reporting.

Article Abstract

Minimal residual disease (MRD) detection is a strong predictor for survival and relapse in acute myeloid leukemia (AML). MRD can be either determined by molecular assessment strategies or via multiparameter flow cytometry. The degree of bone marrow (BM) dilution with peripheral blood (PB) increases with aspiration volume causing consecutive underestimation of the residual AML blast amount. In order to prevent false-negative MRD results, we developed Cinderella, a simple automated method for one-tube simultaneous measurement of hemodilution in BM samples and MRD level. The explainable artificial intelligence (XAI) Cinderella was trained and validated with the digital raw data of a flow cytometric "8-color" AML-MRD antibody panel in 126 BM and 23 PB samples from 35 patients. Cinderella predicted PB dilution with high accordance compared to the results of the Holdrinet formula (Pearson's correlation coefficient r = 0.94, R  = 0.89, p < 0.001). Unlike conventional neuronal networks Cinderella calculated the distributions of 12 different cell populations that were assigned to true hematopoietic counterparts as a human in the loop (HIL) approach. Besides characteristic BM cells such as myelocytes and myeloid progenitor cells the XAI identified discriminating populations, which were not specific for BM or PB (e.g., T cell/NK cell subpopulations and CD45 negative cells) and considered their frequency differences. Thus, Cinderella represents a HIL-XAI algorithm capable to calculate the degree of hemodilution in BM samples with an AML MRD immunophenotype panel. It is explicable, transparent, and paves a simple way to prevent false negative MRD reports.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.a.24686DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
bone marrow
8
minimal residual
8
residual disease
8
acute myeloid
8
myeloid leukemia
8
identification critical
4
critical hemodilution
4
hemodilution artificial
4
intelligence bone
4

Similar Publications

Background: Electronic health records (EHRs) facilitate the accessibility and sharing of patient data among various health care providers, contributing to more coordinated and efficient care.

Objective: This study aimed to summarize the evolution of secondary use of EHRs and their interoperability in medical research over the past 25 years.

Methods: We conducted an extensive literature search in the PubMed, Scopus, and Web of Science databases using the keywords Electronic health record and Electronic medical record in the title or abstract and Medical research in all fields from 2000 to 2024.

View Article and Find Full Text PDF

Background: Digital health technology (DHT) has the potential to revolutionize the health care industry by reducing costs and improving the quality of care in a sector that faces significant challenges. However, the health care industry is complex, involving numerous stakeholders, and subject to extensive regulation. Within the European Union, medical device regulations impose stringent requirements on various ventures.

View Article and Find Full Text PDF

Background: Although agricultural health has gained importance, to date, much of the existing research relies on traditional epidemiological approaches that often face limitations related to sample size, geographic scope, temporal coverage, and the range of health events examined. To address these challenges, a complementary approach involves leveraging and reusing data beyond its original purpose. Administrative health databases (AHDs) are increasingly reused in population-based research and digital public health, especially for populations such as farmers, who face distinct environmental risks.

View Article and Find Full Text PDF

Purpose: Recent advances in artificial intelligence provide opportunities to capture and represent complex features of human language in a more automated manner, offering potential means of improving the efficiency of language assessment. This review article presents computerized approaches for the analysis of narrative language and identification of language disorders in children.

Method: We first describe the current barriers to clinicians' use of language sample analysis, narrative language sampling approaches, and the data processing stages that precede analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!