Hospital congestion is a common problem for the healthcare sector. However, existing approaches including hospital resource optimization and process improvement might lead to huge cost of human and physical structure changes. This study evaluated less disruptive interventions based on a hospital simulation model and offer objective reasoning to support hospital management decisions. This study tested a congestion prevention method that estimates hospital congestion risk level (R), and activates minimum intervention when R is above certain threshold, using a virtual hospital created by simulation modelling. The results indicated that applying a less disruptive intervention is often enough, and more cost effective, to reduce the risk level of hospital congestion. Moreover, the virtual implementation approach enabled testing of the method at a more detailed level, thereby revealed interesting findings difficult to achieve theoretically, such as discharging extra two medical inpatients, rather than surgical inpatients, a day earlier on days when R is above the threshold, would bring more benefits in terms of congestion reduction for the hospital.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9420155PMC
http://dx.doi.org/10.1038/s41598-022-18570-5DOI Listing

Publication Analysis

Top Keywords

hospital congestion
16
hospital
9
minimum intervention
8
risk level
8
congestion
6
virtual evaluation
4
evaluation options
4
options managing
4
managing risk
4
risk hospital
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!