Background: Measuring health inequality is essential to ensure that everyone has equal accessibility to health care. Studies in the past have continuously presented and showed areas or groups of people affected by various inequality in accessing the health resources and services to help improve this matter. Alongside, disease prevention is as important to minimise the disease burden and improve health and quality of life. These aspects are interlinked and greatly contributes to one's health.
Method: In this study, the Gini coefficient and Lorenz curve are used to give an indication of the overall health inequality. The impact of this inequality in granular level is demonstrated using Bayesian estimation for disease detection. The Bayesian estimation used a two-component modelling approach that separates the case detection process and incidence rate using a mixed Poisson distribution while capturing underlying spatio-temporal characteristics. Bayesian model averaging is used in conjunction with the two-component modelling approach to improve the accuracy of estimates by incorporating many candidate models into the analysis instead of using fixed component models. This method is applied to an infectious disease, influenza, in Victoria, Australia between 2013 and 2016 and the corresponding primary health care of the state.
Result: There is a relatively equal distribution of health resources and services pertaining to general practitioners (GP) and GP clinics in Victoria, Australia. Roughly 80 percent of the population shares 70 percent of the number of GPs and GP clinics. The Bayesian estimation with model averaging revealed that access difficulty to health services impacts both case detection probability and incidence rate. Minimal differences are recorded in the observed and estimated incidence of influenza cases considering social deprivation factors. In most years, areas in Victoria's southwest and eastern parts have potential under-reported cases consistent with their relatively lower number of GP or GP clinics.
Conclusion: The Bayesian model estimated a slight discrepancy between the estimated incidence and the observed cases of influenza in Victoria, Australia in 2013-2016 period. This is consistent with the relatively equal health resources and services in the state. This finding is beneficial in determining areas with potential under-reported cases and under-served health care. The proposed approach in this study provides insight into the impact of health inequality in disease detection without requiring costly and time-extensive surveys and relying mainly on the data at hand. Furthermore, the application of Bayesian model averaging provided a flexible modelling framework that allows covariates to move between case detection and incidence models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9419354 | PMC |
http://dx.doi.org/10.1186/s12939-022-01713-5 | DOI Listing |
Int J Mol Sci
January 2025
Department of Obstetrics and Gynecology, Yonsei University Wonju College of Medicine, 20, Ilsan-ro, Wonju-si 26426, Republic of Korea.
Endometriosis is a complex disease with diverse etiologies, including hormonal, immunological, and environmental factors; however, its exact pathogenesis remains unknown. While surgical approaches are the diagnostic and therapeutic gold standard, identifying endometriosis-associated genes is a crucial first step. Five endometriosis-related gene expression studies were selected from the available datasets.
View Article and Find Full Text PDFBMC Psychol
January 2025
School of Public Health, Xuzhou Medical University, 209 Tong Shan Road, Xuzhou, Jiangsu, 221004, China.
Background: This study aims to examine the temporal changes in the incidence, prevalence, and disability-adjusted life years (DALYs) of depressive disorders as well as its association with age, period, and birth cohort among Chinese from 1990 to 2021, and forecast the future trends of incidence rates and numbers from 2022 to 2030.
Methods: Data for analysis were obtained from the Global Burden of Disease (GBD) 2021. Joinpoint analysis was used to calculate the annual percentage change (APC) and average annual percent change (AAPC) to describe the rates of depressive disorders.
Antimicrob Agents Chemother
January 2025
InsightRX, San Francisco, California, USA.
Tobramycin dosing in patients with cystic fibrosis (CF) is challenged by its high pharmacokinetic (PK) variability and narrow therapeutic window. Doses are typically individualized using two-sample log-linear regression (LLR) to quantify the area under the concentration-time curve (AUC). Bayesian model-informed precision dosing (MIPD) may allow dose individualization with fewer samples; however, the relative performance of these methods is unknown.
View Article and Find Full Text PDFMed Care
February 2025
RAND, Health Care, Santa Monica, CA.
Background: Medicare Bayesian Improved Surname and Geocoding (MBISG), which augments an imperfect race-and-ethnicity administrative variable to estimate probabilities that people would self-identify as being in each of 6 mutually exclusive racial-and-ethnic groups, performs very well for Asian American and Native Hawaiian/Pacific Islander (AA&NHPI), Black, Hispanic, and White race-and-ethnicity, somewhat less well for American Indian/Alaska Native (AI/AN), and much less well for Multiracial race-and-ethnicity.
Objectives: To assess whether temporal inconsistency of self-reported race-and-ethnicity might limit improvements in approaches like MBISG.
Methods: Using the Medicare Health Outcomes Survey (HOS) baseline (2013-2018) and 2-year follow-up data (2015-2020), we evaluate the consistency of self-reported race-and-ethnicity coded 2 ways: the 6 mutually exclusive MBISG categories and individual endorsements of each racial-and-ethnic group.
MethodsX
June 2025
Department of Statistics, Institut Teknologi Sepuluh Nopember, Surabaya 60111 Indonesia.
This research introduces the Generalized Extreme Value Mixture Autoregressive (GEVMAR) model as an innovative approach for examining non-standard actuarial datasets within general insurance. Information concerning claim reserves often reveals notable volatility and multimodal distributions, attributes that standard models, including previous method such as the Gaussian Mixture Autoregressive (GMAR) model and other autoregressive methodologies, find problematic to manage effectively. The GEVMAR model integrates the Generalized Extreme Value (GEV) distribution alongside Bayesian estimation techniques, augmented by a modified Signal-to-Noise Ratio (SNR) metric to improve predictive accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!